A Configurable Resource Allocation for Multi-tenant Process Development in the Cloud

  • Emna HachichaEmail author
  • Nour Assy
  • Walid Gaaloul
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)


Cloud computing has become an important infrastructure for outsourcing service-based business processes in a multi-tenancy way. Configurable process models enable the sharing of a reference process among different tenants that can be customized according to specific needs. While concepts for specifying the control flow of such processes are well understood, there is a lack of support for cloud-specific resource configuration where different allocation alternatives need to be explicitly defined. In this paper, we address this research gap by extending configurable process models with the required configurable cloud resource allocation. Our proposal allows different tenants to customize the selection of the needed resources taking into account two important properties elasticity and shareability. Our prototypical implementation demonstrates the feasibility and the results of our experiments highlight the effectiveness of our approach.


  1. 1.
    Mell, P.M., et al.: The nist definition of cloud computing (Technical report) (2011)Google Scholar
  2. 2.
    Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling language. Inf. Syst. 32(1), 1–23 (2007)CrossRefGoogle Scholar
  3. 3.
    Aalst, W.: Business process configuration in the cloud: how to support and analyze multi-tenant processes? In: ECOWS, pp. 3–10. IEEE (2011)Google Scholar
  4. 4.
    Rosa, M.L., van der Aalst, W.M., Dumas, M., Milani, F.P.: Business process variability modeling: a survey (2013)Google Scholar
  5. 5.
    Rosa, M.L., et al.: Configurable multi-perspective business process models. Inf. Syst. 36, 313–340 (2011)CrossRefGoogle Scholar
  6. 6.
    Kumar, A., Yao, W.: Design and management of flexible process variants using templates and rules. Comput. Ind. 63, 112–130 (2012)CrossRefGoogle Scholar
  7. 7.
    Hallerbach, A., et al.: Capturing variability in business process models: the provop approach. J. Softw. Maintenance Evolution Res. Pract. 22, 519–546 (2010)CrossRefGoogle Scholar
  8. 8.
    Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-Cortés, A.: Ralph: a graphical notation for resource assignments in business processes. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 53–68. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Cabanillas, C., Norta, A., Resinas, M., Mendling, J., Ruiz-Cortés, A.: Towards process-aware cross-organizational human resource management. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS 2014 and EMMSAD 2014. LNBIP, vol. 175, pp. 79–93. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Kajan, E., et al.: The network-based business process. IEEE IC 18, 63–69 (2014)Google Scholar
  11. 11.
    Mietzner, R., Leymann, F.: Generation of BPEL customization processes for SaaS applications from variability descriptors. IEEE Conf. SC 2, 359–366 (2008)Google Scholar
  12. 12.
    Gottschalk, F., et al.: Configurable workflow models. IJCIS 17(2), 177 (2008)Google Scholar
  13. 13.
    Ciuksys, D., et al.: Reusing ontological knowledge about business processes in is engineering: process configuration problem. Informatica 18, 585–602 (2007)zbMATHGoogle Scholar
  14. 14.
    Duipmans, E.: Business process management in the cloud: Bpaas (2012)Google Scholar
  15. 15.
    Wang, M., Bandara, K.Y., Pahl, C.: Process as a service. In: SCC, pp. 578–585 (2010)Google Scholar
  16. 16.
    Candra, M.Z.C., Truong, H.-L., Dustdar, S.: Provisioning quality-aware social compute units in the cloud. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 313–327. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Who do you call? problem resolution through social compute units. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 48–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Hoenisch, P., et al.: Workflow scheduling and resource allocation for cloud-based execution of elastic processes. In: IEEE 6th International Conference on SOCA, USA (2013)Google Scholar
  19. 19.
    Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)CrossRefGoogle Scholar
  20. 20.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Schulte, S., et al.: Costdriven optimization of cloud resource allocation for elastic processes. Int. J. Cloud Comput. 1(2), 1–14 (2013)Google Scholar
  22. 22.
    Schulte, S., Hoenisch, P., Venugopal, S., Dustdar, S.: Realizing elastic processes with ViePEP. In: Ghose, A., Zhu, H., Yu, Q., Delis, A., Sheng, Q.Z., Perrin, O., Wang, J., Wang, Y. (eds.) ICSOC 2012. LNCS, vol. 7759, pp. 439–442. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Pufahl, L., Herzberg, N., Meyer, A., Weske, M.: Flexible batch configuration in business processes based on events. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 63–78. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23, 567–619 (2015)CrossRefGoogle Scholar
  25. 25.
    Hachicha, E., Gaaloul, W.: Towards resource-aware business process development in the cloud. In: 29th IEEE International Conference AINA, South Korea, pp. 761–768 (2015)Google Scholar
  26. 26.
    Cabral, L., et al.: The business process modeling ontology. In: SBPM, pp. 9–16 (2009)Google Scholar
  27. 27.
    Edmonds, A., et al.: Toward an open cloud standard. IEEE IC 16, 15–25 (2012)Google Scholar
  28. 28.
    Rady, M.: Parameters for service level agreements generation in cloud computing. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 13–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Cardoso, J.: Evaluating the process control-flow complexity. In: ICWS (2005)Google Scholar
  30. 30.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    List, B., et al.: Evaluation of conceptual bp modelling languages. In: SAC (2006)Google Scholar
  32. 32.
    Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 290–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Vogelaar, J., et al.: Comparing business processes to determine the feasibility of configurable models: a case study. In: BPM Workshops, France, pp. 50–61 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emna Hachicha
    • 1
    Email author
  • Nour Assy
    • 2
  • Walid Gaaloul
    • 1
  • Jan Mendling
    • 3
  1. 1.Telecom SudParis, UMR 5157 Samovar, Université Paris-SaclayEvryFrance
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Vienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations