Comprehensibility of Variability in Model Fragments for Product Configuration

  • Jorge Echeverría
  • Francisca Pérez
  • Carlos Cetina
  • Óscar Pastor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)

Abstract

The ability to manage variability in software has become crucial to overcome the complexity and variety of systems. To this end, a comprehensible representation of variability is important. Nevertheless, in previous works, difficulties have been detected to understand variability in an industrial environment. Specifically, domain experts had difficulty understanding variability in model fragments to produce the software for their products. Hence, the aim of this paper is to further investigate these difficulties by conducting an experiment in which participants deal with variability in order to achieve their desired product configurations. Our results show new insights into product configuration which suggest next steps to improve general variability modeling approaches, and therefore promoting the adoption of these approaches in industry.

Keywords

Variability modeling Software product line engineering Model comprehension Product configuration 

Notes

Acknowledgments

This work has been partially supported by the Ministry of Economy and Competitiveness (MINECO), through the Spanish National R+D+i Plan and ERDF funds under The project Model-Driven Variability Extraction for Software Product Lines Adoption (TIN2015-64397-R).

References

  1. 1.
    Berger, T., Nair, D., Rublack, R., Atlee, J.M., Czarnecki, K., Wąsowski, A.: Three cases of feature-based variability modeling in industry. In: ACM/IEEE 17th International Conference on Model Driven Engineering Languages and Systems (MODELS) (2014)Google Scholar
  2. 2.
    Botterweck, G., Thiel, S., Nestor, D., bin Abid, S., Cawley, C.: Visual tool support for configuring and understanding software product lines. In: 12th International Conference on Software Product Line, SPLC 2008, pp. 77–86, September 2008Google Scholar
  3. 3.
    Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co. Inc, Boston (2001)Google Scholar
  4. 4.
    Condori-Fernández, N., Panach, J.I., Baars, A.I., Vos, T.E.J., Pastor, O.: An empirical approach for evaluating the usability of model-driven tools. Sci. Comput. Program. 78(11), 2245–2258 (2013)CrossRefGoogle Scholar
  5. 5.
    CVL Submission Team. Common variability language (CVL), OMG revised submission (2012). http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf
  6. 6.
    Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Echeverría, J., Font, J., Cetina, C., Pastor, O.: Usability evaluation of variability modeling by means of common variability language. In: Proceedings of the CAiSE 2015 Forum at the 27th International Conference on Advanced Information Systems Engineering co-located with 27th International Conference on Advanced Information Systems Engineering (CAiSE 2015), Stockholm, Sweden, 10 June 2015, pp. 105–112 (2015)Google Scholar
  8. 8.
    Grünbacher, P., Rabiser, R., Dhungana, D.: Product line tools are product lines too: lessons learned from developing a tool suite. In: 23rd IEEE/ACM International Conference on Automated Software Engineering, pp. 351–354, September 2008Google Scholar
  9. 9.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon University Software Engineering Institute, November 1990Google Scholar
  10. 10.
    Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E., Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)CrossRefGoogle Scholar
  11. 11.
    Krosnick, J.A., Presser, S.: Question and questionnaire design. In: Handbook of Survey Research, 2nd edn., pp. 263–314 (2010)Google Scholar
  12. 12.
    Krueger, R.A., Casey, M.A.: Designing and conducting focus group interviews. In: Krueger, RA., Casey, M.A., Donner, J., Kirsch, S., Maack, J.N. (eds.) Social Analysis, Selected Tools and Techniques, pp. 4–23 (2002)Google Scholar
  13. 13.
    Kumar, S., Karoli, V.: Handbook of Business Research Methods. Thakur Publishers, Lucknow (2011)Google Scholar
  14. 14.
    Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., Gheyi, R.: The love, hate relationship with the C preprocessor: an interview study (artifact). DARTS 1(1), 07:1–07:32 (2015)Google Scholar
  15. 15.
    Oldevik, J., Haugen, Ø., Møller-Pedersen, B.: Confluence in domain-independent product line transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 34–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations Principles and Techniques. Springer, New York (2005)CrossRefMATHGoogle Scholar
  17. 17.
    Rabiser, R., Dhungana, D., Heider, W., Grünbacher, P.: Flexibility and end-user support in model-based product line tools. In: 35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2009, pp. 508–511 (2009)Google Scholar
  18. 18.
    Reinhartz-Berger, I., Figl, K.: Comprehensibility of orthogonal variability modeling languages: the cases of CVL and OVM. In: Proceedings of the 18th International Software Product Line Conference SPLC 2014, New York, NY, USA, vol. 1, pp. 42–51. ACM (2014)Google Scholar
  19. 19.
    Reinhartz-Berger, I., Figl, K., Haugen, Ø.: Comprehending feature models expressed in CVL. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 501–517. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Reinhartz-Berger, I., Tsoury, A.: Experimenting with the comprehension of feature-oriented and UML-based core assets. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 468–482. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)CrossRefGoogle Scholar
  22. 22.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Svendsen, A., Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Towards evolution of generic variability models. In: Kienzle, J. (ed.) MODELS 2011. LNCS, vol. 7167, pp. 53–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Vasilevskiy, A., Haugen, Ø.: Resolution of interfering product fragments in software product line engineering. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 467–483. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jorge Echeverría
    • 1
  • Francisca Pérez
    • 1
  • Carlos Cetina
    • 1
  • Óscar Pastor
    • 2
  1. 1.SVIT Research GroupUniversidad San JorgeZaragozaSpain
  2. 2.Centro de Investigación en Métodos de Producción de SoftwareUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations