Advertisement

Optimizing Monitorability of Multi-cloud Applications

  • Edoardo Fadda
  • Pierluigi PlebaniEmail author
  • Monica Vitali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)

Abstract

When adopting a multi-cloud strategy, the selection of cloud providers where to deploy VMs is a crucial task for ensuring a good behaviour for the developed application. This selection is usually focused on the general information about performances and capabilities offered by the cloud providers. Less attention has been paid to the monitoring services although, for the application developer, is fundamental to understand how the application behaves while it is running. In this paper we propose an approach based on a multi-objective mixed integer linear optimization problem for supporting the selection of the cloud providers able to satisfy constraints on monitoring dimensions associated to VMs. The balance between the quality of data monitored and the cost for obtaining these data is considered, as well as the possibility for the cloud provider to enrich the set of monitored metrics through data analysis.

Keywords

Optimized deployment Monitoring requirements Metric accuracy 

References

  1. 1.
    Aceto, G., Botta, A., de Donato, W., Pescap, A.: Cloud monitoring: a survey. Comput. Netw. 57(9), 2093–2115 (2013)CrossRefGoogle Scholar
  2. 2.
    Alcaraz Calero, J.M., Knig, B., Kirschnick, J.: Using cross-layertechniques for communication systems, chap. In: Cross-Layer Monitoring in Cloud Computing. IGI Global, Hershey (2012)Google Scholar
  3. 3.
    Dai, W., Chen, H., Wang, W., Chen, X.: RMORM: a framework of multi-objective optimization resource management in clouds. Proceedings of IEEE Services, pp. 488–494 (2013)Google Scholar
  4. 4.
    Funika, W., Godowski, P., Pegiel, P., Król, D.: Semantic-oriented performance monitoring of distributed applications. Comput. Inf. 31(2), 427–446 (2012)Google Scholar
  5. 5.
    Gao, J.: Machine learning applications for data center optimization. Technical report, Google (2014)Google Scholar
  6. 6.
    Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Goiri, Í., Berral, J.L., Fitó, J.O., Julià, F., Nou, R., Guitart, J., Gavaldà, R., Torres, J.: Energy-efficient and multifaceted resource management for profit-driven virtualized data centers. Future Gener. Comput. Syst. 28(5), 718–731 (2012)CrossRefGoogle Scholar
  8. 8.
    Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput. Surv. 48(2), 22:1–22:46 (2015)CrossRefGoogle Scholar
  9. 9.
    Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.: Adaptation of service-based applications based on process quality factor analysis. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 395–404. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Liu, F., et al.: NIST Cloud Computing Reference Architecture: Recommendations of the National Institute of Standards and Technology (Special Publication 500–292). CreateSpace Independent Publishing Platform, USA (2012)Google Scholar
  11. 11.
    Melià, P., Schiavina, M., Gatto, M., Bonaventura, L., Masina, S., Casagrande, R.: Integrating field data into individual-based models of the migration of european eel larvae. Marine Ecol. Prog. Ser. 487, 135–149 (2013)CrossRefGoogle Scholar
  12. 12.
    Petcu, D.: Multi-cloud: expectations and current approaches. In: Proceedings of the 2013 International Workshop on Multi-cloud Applications and Federated Clouds, MultiCloud 2013, NY, USA, pp. 1–6. ACM, New York (2013)Google Scholar
  13. 13.
    Portosa, A., Rafique, M., Kotoulas, S., Foschini, L., Corradi, A.: Heterogeneous cloud systems monitoring using semantic and linked data technologies. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 497–503, May 2015Google Scholar
  14. 14.
    Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in Wordnet. In: Proceedings of Eureopean Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, 22–27 August 2004, pp. 1089–1090. IOS Press (2004)Google Scholar
  15. 15.
    Sheth, A., Ranabahu, A.: Semantic modeling for cloud computing, part 1. IEEE Internet Comput. 14(3), 81–83 (2010)CrossRefGoogle Scholar
  16. 16.
    Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comp. Surv. 47(1), 1–47 (2014)CrossRefGoogle Scholar
  17. 17.
    Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)CrossRefGoogle Scholar
  18. 18.
    Vitali, M., Pernici, B., O’Reilly, U.M.: Learning a goal-oriented model for energy efficient adaptive applications in data centers. Inf. Sci. 319, 152–170 (2015)CrossRefGoogle Scholar
  19. 19.
    Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis, D.: Towards cross-layer monitoring of multi-cloud service-based applications. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 188–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edoardo Fadda
    • 1
  • Pierluigi Plebani
    • 2
    Email author
  • Monica Vitali
    • 2
  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.Politecnico di MilanoMilanoItaly

Personalised recommendations