Predictive Business Process Monitoring Framework with Hyperparameter Optimization
- 23 Citations
- 1.6k Downloads
Abstract
Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.
Keywords
Predictive process monitoring Hyperparameter optimization Linear temporal logicNotes
Acknowledgments
This research is funded by the EU FP7 Programme under grant agreement 609190 (Subject-Orientation for People-Centred Production) and by the Estonian Research Council (grant IUT20-55).
References
- 1.3TU Data Center: BPI Challenge 2011 Event Log (2011)Google Scholar
- 2.van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
- 3.Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 4.Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based Predictive Process Monitoring. arXiv preprint (2015)Google Scholar
- 5.van Dongen; B.: Bpi challenge (2015). doi: 10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
- 6.Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 7.Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 8.Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.: Mlbase: A distributed machine-learning system. In: CIDR (2013). www.cidrdb.org
- 9.Luo, G.: Mlbcd: a machine learning tool for big clinical data. Health Inf. Sci. Syst. 3(1), 1–19 (2015)CrossRefGoogle Scholar
- 10.Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014)Google Scholar
- 11.Maggi, F.M., Westergaard, M.: Designing software for operational decision support through coloured Petri nets. Enterprise Information Systems, 1–21 (2015)Google Scholar
- 12.Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: ICML, pp. 743–750 (2000)Google Scholar
- 13.Pika, A., Aalst, W., Fidge, C., Hofstede, A., Wynn, M.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops, pp. 211–216. Springer, Heidelberg (2013)Google Scholar
- 14.Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
- 15.Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 16.Suriadi, S., Ouyang, C., Aalst, W., Hofstede, A.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops, pp. 174–186. Springer, Heidelberg (2013)Google Scholar
- 17.Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD-2013, pp. 847–855 (2013)Google Scholar
- 18.Westergaard, M., Maggi, F.M.: Modeling and verification of a protocol for operational support using coloured petri nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 19.Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter search space pruning – a new component for sequential model-based hyperparameter optimization. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 104–119. Springer, Heidelberg (2015)CrossRefGoogle Scholar