Predictive Business Process Monitoring Framework with Hyperparameter Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)


Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.


Predictive process monitoring Hyperparameter optimization Linear temporal logic 



This research is funded by the EU FP7 Programme under grant agreement 609190 (Subject-Orientation for People-Centred Production) and by the Estonian Research Council (grant IUT20-55).


  1. 1.
    3TU Data Center: BPI Challenge 2011 Event Log (2011)Google Scholar
  2. 2.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  3. 3.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based Predictive Process Monitoring. arXiv preprint (2015)Google Scholar
  5. 5.
    van Dongen; B.: Bpi challenge (2015). doi: 10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
  6. 6.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.: Mlbase: A distributed machine-learning system. In: CIDR (2013).
  9. 9.
    Luo, G.: Mlbcd: a machine learning tool for big clinical data. Health Inf. Sci. Syst. 3(1), 1–19 (2015)CrossRefGoogle Scholar
  10. 10.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Maggi, F.M., Westergaard, M.: Designing software for operational decision support through coloured Petri nets. Enterprise Information Systems, 1–21 (2015)Google Scholar
  12. 12.
    Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: ICML, pp. 743–750 (2000)Google Scholar
  13. 13.
    Pika, A., Aalst, W., Fidge, C., Hofstede, A., Wynn, M.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops, pp. 211–216. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
  15. 15.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Suriadi, S., Ouyang, C., Aalst, W., Hofstede, A.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops, pp. 174–186. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD-2013, pp. 847–855 (2013)Google Scholar
  18. 18.
    Westergaard, M., Maggi, F.M.: Modeling and verification of a protocol for operational support using coloured petri nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter search space pruning – a new component for sequential model-based hyperparameter optimization. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 104–119. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of TartuTartuEstonia
  2. 2.FBK-IRSTTrentoItaly
  3. 3.University of TrentoTrentoItaly

Personalised recommendations