Advertisement

Business Process Performance Mining with Staged Process Flows

  • Hoang NguyenEmail author
  • Marlon Dumas
  • Arthur H. M. ter Hofstede
  • Marcello La Rosa
  • Fabrizio Maria Maggi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)

Abstract

Existing business process performance mining tools offer various summary views of the performance of a process over a given period of time, allowing analysts to identify bottlenecks and their performance effects. However, these tools are not designed to help analysts understand how bottlenecks form and dissolve over time nor how the formation and dissolution of bottlenecks – and associated fluctuations in demand and capacity – affect the overall process performance. This paper presents an approach to analyze the evolution of process performance via a notion of Staged Process Flow (SPF). An SPF abstracts a business process as a series of queues corresponding to stages. The paper defines a number of stage characteristics and visualizations that collectively allow process performance evolution to be analyzed from multiple perspectives. It demonstrates the advantages of the SPF approach over state-of-the-art process performance mining tools using a real-life event log of a Dutch bank.

Keywords

Process mining Performance analysis Multistage processes Cumulative flow Queuing theory 

Notes

Acknowledgments

This research is funded by the Australian Research Council Discovery Project DP150103356 and the Estonian Research Council (grant IUT20-55).

References

  1. 1.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Modig, N., Ahlström, P.: This is lean: resolving the efficiency paradox. Rheologica (2012)Google Scholar
  4. 4.
    Hornix, P.T.: Performance analysis of business processes through process mining. Master’s thesis, Eindhoven University of Technology (2007)Google Scholar
  5. 5.
    Gunther, C.W., Rozinat, A.: Disco: Discover your processes. In: Proceedings of BPM Demos. CEUR Workshop Proceedings, vol. 940, pp. 40–44 (2012)Google Scholar
  6. 6.
    van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  7. 7.
    van Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and performance visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., Leyer, M., van der Aalst, W.M.P.: An extensible framework for analysing resource behaviour using event logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Conforti, R., Dumas, M., La Rosa, M., Maaradji, A., Nguyen, H., Ostovar, A., Raboczi, S.: Analysis of business process variants in apromore. In: Proceedings of the BPM Demos. CEUR, vol. 1418 (2015)Google Scholar
  12. 12.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    de Smet, L.: Queue mining: combining process mining and queueing analysis to understand bottlenecks, to predict delays, and to suggest process improvements. Master’s thesis, Eindhoven University of Technology (2014)Google Scholar
  14. 14.
    Reinertsen, D.: Managing the Design Factory: A Product Developers Tool Kit. Simon & Schuster Ltd, New York (1998)Google Scholar
  15. 15.
    Nguyen, H., Dumas, M., ter Hofstede, A., La Rosa, M., Maggi, F.: Business process performance mining with staged process flows. QUT ePrints Technical report 91110, Queensland University of Technology (2015). http://eprints.qut.edu.au/91110
  16. 16.
    Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008)CrossRefGoogle Scholar
  17. 17.
    Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: BPMN miner: automated discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)CrossRefGoogle Scholar
  18. 18.
    Reynolds, M., Amin, R., Arnold, J.: CUSUM charts with variable sampling intervals. Technometrics 32(4), 371–384 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hoang Nguyen
    • 1
    Email author
  • Marlon Dumas
    • 2
  • Arthur H. M. ter Hofstede
    • 1
  • Marcello La Rosa
    • 1
  • Fabrizio Maria Maggi
    • 2
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.University of TartuTartuEstonia

Personalised recommendations