A Visual Approach to Spot Statistically-Significant Differences in Event Logs Based on Process Metrics

  • Alfredo BoltEmail author
  • Massimiliano de Leoni
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)


This paper addresses the problem of comparing different variants of the same process. We aim to detect relevant differences between processes based on what was recorded in event logs. We use transition systems to model behavior and to highlight differences. Transition systems are annotated with measurements, used to compare the behavior in the variants. The results are visualized as transitions systems, which are colored to pinpoint the significant differences. The approach has been implemented in ProM, and the implementation is publicly available. We validated our approach by performing experiments using real-life event data. The results show how our technique is able to detect relevant differences undetected by previous approaches while it avoids detecting insignificant differences.


Process variants comparison Annotated transition system Statistical significance Process mining 


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bolt, A., van der Aalst, W.M.P.: Multidimensional process mining using process cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 102–116. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011). Special Issue: Semantic Integration of Data, Multimedia, and ServicesCrossRefGoogle Scholar
  5. 5.
    Welch, B.L.: The generalization of ‘student’s’ problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale (1988)zbMATHGoogle Scholar
  7. 7.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015). doi: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
  9. 9.
    Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference analysis of process models and instance traffic. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 219–226. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Cordes, C., Vogelgesang, T., Appelrath, H.-J.: A generic approach for calculating and visualizing differences between process models in multidimensional process mining. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 383–394. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11:1–11:42 (2013)Google Scholar
  12. 12.
    Ivanov, S., Kalenkova, A., van der Aalst, W.M.P.: BPMNDiffViz: a tool for BPMN models comparison. In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th International Conference on Business Process Management (BPM 2015), Innsbruck, Austria, 2 September 2015, pp. 35–39 (2015)Google Scholar
  13. 13.
    van Beest, N., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Proceedings of the 13th International Conference on Business Process Management (BPM 2015), pp. 386–405 (2015)Google Scholar
  14. 14.
    Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Lakshmanan, G.T., Rozsnyai, S., Wang, F.: Investigating clinical care pathways correlated with outcomes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 323–338. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K.: A process deviation analysis – a case study. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 87–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alfredo Bolt
    • 1
    Email author
  • Massimiliano de Leoni
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations