Gamification of Collaborative Learning Scenarios: Structuring Persuasive Strategies Using Game Elements and Ontologies

  • Geiser Chalco Challco
  • Riichiro Mizoguchi
  • Ig Ibert Bittencourt
  • Seiji IsotaniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 606)


This work presents an ontological model for the formal systematization and representation of knowledge that describes concepts from gamification and its use as Persuasive Technology (PT) in Collaborative Learning (CL) scenarios. This model enables the creation of intelligent systems that can personalize and apply the gamification techniques in group learning contexts in which the scripted collaboration decreases the motivation and engagement of students. Thus, our approach proposes to formalize the connection of concepts from theories and models to design PT in order to specify gamified CSCL scripts that induce students to willingly follow an intended learning behavior. To demonstrate the applicability of our approach, we also present a case study that shows how our ontological model could be used by in an intelligent theory-aware system to build better personalized gamified CL scenarios.


Ontologies Gamification Persuasion Persuasive strategies Collaborative learning CSCL scripts 



The authors would like to thank CNPq and CAPES for supporting this research.


  1. 1.
    Busch, M., et al.: Personalization in serious and persuasive games and gamified interactions. In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2015, pp. 811–816. ACM (2015)Google Scholar
  2. 2.
    Challco, G.C., Moreira, D.A., Bittencourt, I.I., Mizoguchi, R., Isotani, S.: Personalization of gamification in collaborative learning contexts using ontologies. IEEE Latin Am. Trans. 13, 1995–2002 (2015)CrossRefGoogle Scholar
  3. 3.
    Challco, G.C., Andrade, F., Oliveira, T., Mizoguchi, R., Isotani, S.: An ontological model to apply gamification as persuasive technology in collaborative learning scenarios. Anais do XXVI Simpósio Brasileiro de Informática na Educação 26, 499–508 (2015)CrossRefGoogle Scholar
  4. 4.
    Challco, G.C., Moreira, D.A., Mizoguchi, R., Isotani, S.: An ontology engineering approach to gamify collaborative learning scenarios. In: Baloian, N., Burstein, F., Ogata, H., Santoro, F., Zurita, G. (eds.) CRIWG 2014. LNCS, vol. 8658, pp. 185–198. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Challco, G.C., Moreira, D., Mizoguchi, R., Isotani, S.: Towards an ontology for gamifying collaborative learning scenarios. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 404–409. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Falout, J., Elwood, J., Hood, M.: Demotivation: affective states and learning outcomes. System 37, 403–417 (2009)CrossRefGoogle Scholar
  7. 7.
    Fishbein, M., Ajzen, I.: Predicting and Changing Behavior: The Reasoned Action Approach. Psychology Press, New York (2009)Google Scholar
  8. 8.
    Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann, Amsterdam (2002)Google Scholar
  9. 9.
    Grimes, A., Kantroo, V., Grinter, R.E.: Let’s play!: mobile health games for adults. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, UbiComp 2010, pp. 241–250. ACM (2010)Google Scholar
  10. 10.
    Hamari, J., Koivisto, J., Pakkanen, T.: Do persuasive technologies persuade? - a review of empirical studies. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 118–136. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?–a literature review of empirical studies on gamification. In: Proceedings of the 2014 47th Hawaii International Conference on System Sciences, HICSS 2014, pp. 3025–3034. IEEE Computer Society (2014)Google Scholar
  12. 12.
    Hayashi, Y., Bourdeau, J., Mizoguchi, R.: Structuring learning/instructional strategies through a state-based modeling. In: Proceedings of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge Representation to Affective Modelling, pp. 215–222. IOS Press (2009)Google Scholar
  13. 13.
    Isotani, S., Mizoguchi, R., Isotani, S., Capeli, O.M., Isotani, N., de Albuquerque, A.R.: An authoring tool to support the design and use of theory-based collaborative learning activities. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part II. LNCS, vol. 6095, pp. 92–102. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Isotani, S., et al.: A Semantic Web-based authoring tool to facilitate the planning of collaborative learning scenarios compliant with learning theories. Comput. Educ. 63, 267–284 (2013)CrossRefGoogle Scholar
  15. 15.
    Isotani, S., Inaba, A., Ikeda, M., Mizoguchi, R.: An ontology engineering approach to the realization of theory-driven group formation. Int. J. Comput. Support. Collab. Learn. 4, 445–478 (2009)CrossRefGoogle Scholar
  16. 16.
    Kaptein, M., De Ruyter, B., Markopoulos, P., Aarts, E.: Adaptive persuasive systems: a study of tailored persuasive text messages to reduce snacking. ACM Trans. Interact. Intell. Syst. 2, 10:1–10:25 (2012)CrossRefGoogle Scholar
  17. 17.
    Kaptein, M., Markopoulos, P., de Ruyter, B., Aarts, E.: Personalizing persuasive technologies: Explicit and implicit personalization using persuasion profiles. Int. J. Hum Comput Stud. 77, 38–51 (2015)CrossRefGoogle Scholar
  18. 18.
    Kegel, R.H.P., Wieringa, R.J.: Persuasive technologies: a systematic literature review and application to PISA (2014).
  19. 19.
    Khaled, R., Barr, P., Biddle, R., Fischer, R., Noble, J.: Game design strategies for collectivist persuasion. In: Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox 2009, pp. 31–38. ACM (2009)Google Scholar
  20. 20.
    Khaled, R., Barr, P., Boyland, J., Fischer, R., Biddle, R.: Fine tuning the persuasion in persuasive games. In: de Kort, Y.A., IJsselsteijn, W.A., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Kozaki, K., Kitamura, Y., Ikeda, M., Mizoguchi, R.: Hozo: an environment for building/using ontologies based on a fundamental consideration of “Role” and “Relationship”. In: Gómez-Pérez, A., Benjamins, V. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 213–218. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Lockton, D., Harrison, D., Stanton, N.A.: The Design with Intent Method: A design tool for influencing user behaviour. Appl. Ergonomics 41, 382–392 (2010)CrossRefGoogle Scholar
  23. 23.
    Masthoff, J., Vassileva, J.: Tutorial on personalization for behaviour change. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI 2015, pp. 439–442. ACM (2015)Google Scholar
  24. 24.
    Mizoguchi, R.: Tutorial on ontological engineering Part 2: Ontology development, tools and languages. New Gener. Comput. 22, 61–96 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mizoguchi, R.: YAMATO: yet another more advanced top-level ontology. In: Proceedings of the Sixth Australasian Ontology Workshop, pp. 1–16 (2010)Google Scholar
  26. 26.
    Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: The model of roles within an ontology development tool: hozo. Appl. Ontology Roles Interdisc. Perspect. 2, 159–179 (2007)Google Scholar
  27. 27.
    Oinas-Kukkonen, H., Harjumaa, M.: A systematic framework for designing and evaluating persuasive systems. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 164–176. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: Key issues, process model, and system features. Commun. Assoc. Inf. Syst. 24, 28 (2009)Google Scholar
  29. 29.
    Orji, R., Vassileva, J., Mandryk, R.L.: Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Model. User-Adap. Inter. 24, 453–498 (2014)CrossRefGoogle Scholar
  30. 30.
    Petty, R.E., Cacioppo, J.T.: The Elaboration Likelihood Model of Persuasion. In: Petty, R.E., Cacioppo, J.T. (eds.) Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Springer Series in Social Psychology, pp. 1–24. Springer, New York (1986)CrossRefGoogle Scholar
  31. 31.
    de Sousa Borges, S., Durelli, V.H.S., Reis, H.M., Isotani, S.: A systematic mapping on gamification applied to education. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 216–222. ACM (2014)Google Scholar
  32. 32.
    Srivastava, J., Shu, L.H.: An ontology for unifying behavior-change literature. CIRP Ann. Manufact. Technol. 63, 173–176 (2014)CrossRefGoogle Scholar
  33. 33.
    Stegmann, K., Weinberger, A., Fischer, F.: Facilitating argumentative knowledge construction with computer-supported collaboration scripts. Int. J. Comput. Support. Collab. Learn. 2, 421–447 (2007)CrossRefGoogle Scholar
  34. 34.
    Sundar, S., Bellur, S., Jia, H.: Motivational technologies: a theoretical framework for designing preventive health applications. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 112–122. Springer, Heidelberg (2012)Google Scholar
  35. 35.
    Torning, K.: A review of four persuasive design models. Int. J. Conceptual Struct. Smart Appl. 1, 17–27 (2013)CrossRefGoogle Scholar
  36. 36.
    Torning, K., Oinas-Kukkonen, H.: Persuasive system design: state of the art and future directions. In: Proceedings of the 4th International Conference on Persuasive Technology, Persuasive 2009, pp. 30:1–30:8. ACM (2009)Google Scholar
  37. 37.
    Yusoff, Z., Kamsin, A.: Game rhetoric: interaction design model of persuasive learning for serious games. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2015. LNCS, vol. 9192, pp. 644–654. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Geiser Chalco Challco
    • 1
  • Riichiro Mizoguchi
    • 2
  • Ig Ibert Bittencourt
    • 3
  • Seiji Isotani
    • 1
    Email author
  1. 1.ICMC, University of São PauloSão CarlosBrazil
  2. 2.Japan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Federal University of AlagoasMaceióBrazil

Personalised recommendations