Antimicrobial Drug Efflux Pumps in Enterobacter and Klebsiella

  • Anne Davin-Regli
  • Muriel Masi
  • Suzanne Bialek
  • Marie-Hélène Nicolas-Chanoine
  • Jean-Marie PagèsEmail author


Enterobacter and Klebsiella spp. are recognized as important opportunistic and multidrug-resistant bacterial pathogens and now classified in the ESKAPE microorganism group. These Gram-negative bacteria exhibit a rapid and efficient adaptation to antimicrobial agents and are responsible for several healthcare-associated infections. The modification of the transporters involved in the drug translocation through membrane barrier represents the first line of bacterial defense. Multidrug resistance is primarily due to modifications of membrane transporters involved in the antimicrobial translocation. This results from the activation of several regulatory pathways such as Mar or Ram that control membrane permeability through the expression of porins and efflux pumps. The overexpression of efflux pumps dramatically reduces the intra-bacterial concentration of various classes of antimicrobials, and the extrusion takes place rapidly when the pumps are active. The Enterobacter and Klebsiella prevalence in human infections and the major contribution of efflux for controlling the intracellular concentration of antimicrobials highlight the role of the membrane barrier in bacterial strategies facing our antimicrobial arsenal.


Enterobacter Klebsiella Antimicrobial resistance Efflux pumps Outer membrane Porin Activator Repressor Virulence AcrAB-TolC EefABC OqxAB AcrR RamA RamR RarA 



The research leading to the results discussed here was conducted as part of the translocation consortium ( and has received support from the Innovative Medicines Initiative joint Undertaking under Grant Agreement n°115525, resources which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP/2007-2013) and EFPIA companies in kind contributions.


  1. 1.
    Diene SM, Merhej V, Henry M, El Filali A, Roux V, Robert C, Azza S, Gavory F et al (2013) The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new “killer bugs” are created because of a sympatric lifestyle. Mol Biol Evol 30:369–383. doi: 10.1093/molbev/mss236 PubMedCrossRefGoogle Scholar
  2. 2.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. doi: 10.1086/595011 PubMedCrossRefGoogle Scholar
  3. 3.
    Rice LB (2010) Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol 31(Suppl 1):S7–S10. doi: 10.1086/655995 PubMedCrossRefGoogle Scholar
  4. 4.
    Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603PubMedPubMedCentralGoogle Scholar
  5. 5.
    Philippe N, Maigre L, Santini S, Pinet E, Claverie JM, Davin-Regli A, Pagès JM, Masi M (2015) In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLoS One 10:e0138828. doi: 10.1371/journal.pone.0138828 Google Scholar
  6. 6.
    Davin-Regli A, Pagès JM (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:392. doi: 10.3389/fmicb.2015.00392 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bosi C, Davin-Regli A, Bornet C, Malléa M, Pagès JM, Bollet C (1999) Most Enterobacter aerogenes strains in France belong to a prevalent clone. J Clin Microbiol 37:2165–2169PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chevalier J, Mulfinger C, Garnotel E, Nicolas P, Davin-Regli A, Pagès JM (2008) Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS One 3:e3203. doi: 10.1371/journal.pone.0003203 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Giamarellou H (2005) Multidrug resistance in Gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 11(Suppl 4):1–16. doi: 10.1111/j.1469-0691.2005.01160.x PubMedCrossRefGoogle Scholar
  10. 10.
    Anastay M, Lagier E, Blanc V, Chardon H (2013) Epidemiology of extended spectrum β-lactamases (ESBL) Enterobacteriaceae in a General Hospital, South of France, 1999–2007. Pathol Biol (Paris) 61:38–43. doi: 10.1016/j.patbio.2012.03.001 CrossRefGoogle Scholar
  11. 11.
    Arpin C, Coze C, Rogues AM, Gachie JP, Bebear C, Quentin C (1996) Epidemiological study of an outbreak due to multidrug-resistant Enterobacter aerogenes in a medical intensive care unit. J Clin Microbiol 34:2163–2169PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jarlier V, INVS (2014) Surveillance of multidrug resistant bacteria in French healthcare facilities BMR-Raisin network Données 2012. Institut de veille sanitaire, Saint-Maurice, Google Scholar
  13. 13.
    Potron A, Poirel L, Rondinaud E, Nordmann P (2013) Intercontinental spread of OXA-48 β-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 18:e20549. doi: 10.2807/1560-7917.ES2013.18.31.20549 CrossRefGoogle Scholar
  14. 14.
    Izdebski R, Baraniak A, Herda M, Fiett J, Bonten MJ, Carmeli Y, Goossens H, Hryniewicz W et al (2015) MLST reveals potentially high-risk international clones of Enterobacter cloacae. J Antimicrob Chemother 70:48–56. doi: 10.1093/jac/dku359 PubMedCrossRefGoogle Scholar
  15. 15.
    Carbonne A, Arnaud I, Maugat S, Marty N, Dumartin C, Bertrand X, Bajolet O, Savey A et al (2013) National multidrug-resistant bacteria (MDRB) surveillance in France through the RAISIN network: a 9 year experience. J Antimicrob Chemother 68:954–959. doi: 10.1093/jac/dks464 PubMedCrossRefGoogle Scholar
  16. 16.
    Freitas F, Machado E, Ribeiro TG, Novais A, Peixe L (2014) Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur J Clin Microbiol Infect Dis 33:551–558. doi: 10.1007/s10096-013-1983-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–878. doi: 10.1093/clinids/10.4.867 PubMedCrossRefGoogle Scholar
  18. 18.
    Nikaido H, Pagès JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340–363. doi: 10.1111/j.1574-6976.2011.00290.x PubMedCrossRefGoogle Scholar
  19. 19.
    Robert J, Pantel A, Merens A, Lavigne JP, Nicolas-Chanoine MH, Group ONsCRS (2014) Incidence rates of carbapenemase-producing Enterobacteriaceae clinical isolates in France: a prospective nationwide study in 2011–12. J Antimicrob Chemother 69:2706–2712. doi: 10.1093/jac/dku208 PubMedCrossRefGoogle Scholar
  20. 20.
    Keynan Y, Rubinstein E (2007) The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents 30:385–389. doi: 10.1016/j.ijantimicag.2007.06.019 PubMedCrossRefGoogle Scholar
  21. 21.
    Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, Garin B, Le Hello S et al (2014) Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 20:1812–1820. doi: 10.3201/eid2011.140206 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Malléa M, Chevalier J, Bornet C, Eyraud A, Davin-Regli A, Bollet C, Pagès JM (1998) Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144:3003–3009. doi: 10.1099/00221287-144-11-3003 Google Scholar
  23. 23.
    Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. doi: 10.1016/S1473-3099(09)70054-4 PubMedCrossRefGoogle Scholar
  24. 24.
    Pradel E, Pagès JM (2002) The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 46:2640–2643. doi: 10.1128/AAC.46.8.2640-2643.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Coudeyras S, Nakusi L, Charbonnel N, Forestier C (2008) A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun 76:4633–4641. doi: 10.1128/IAI.00356-08 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Masi M, Pagès JM, Villard C, Pradel E (2005) The eefABC multidrug efflux pump operon is repressed by H-NS in Enterobacter aerogenes. J Bacteriol 187:3894–3897. doi: 10.1128/JB.187.11.3894-3897.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bialek-Davenet S, Lavigne JP, Guyot K, Mayer N, Tournebize R, Brisse S, Leflon-Guibout V, Nicolas-Chanoine MH (2015) Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother 70:81–88. doi: 10.1093/jac/dku340 PubMedCrossRefGoogle Scholar
  28. 28.
    Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC (2009) oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 53:3582–3584. doi: 10.1128/AAC.01574-08 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wong MH, Chan EW, Chen S (2015) Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother 59:3290–3297. doi: 10.1128/AAC.00310-15 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, Krauss GJ, Nies DH, Grass G (2005) TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 187:6701–6707. doi: 10.1128/JB.187.19.6701-6707.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kim HS, Nagore D, Nikaido H (2010) Multidrug efflux pump MdtBC of Escherichia coli is active only as a B2C heterotrimer. J Bacteriol 192:1377–1386. doi: 10.1128/JB.01448-09 PubMedCrossRefGoogle Scholar
  32. 32.
    Long F, Su CC, Lei HT, Bolla JR, Do SV, Yu EW (2012) Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philos Trans R Soc Lond B Biol Sci 367:1047–1058. doi: 10.1098/rstb.2011.0203 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Su CC, Long F, Yu EW (2011) The Cus efflux system removes toxic ions via a methionine shuttle. Protein Sci 20:6–18. doi: 10.1002/pro.532 PubMedCrossRefGoogle Scholar
  34. 34.
    Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J et al (2012) Complete genome sequence of Enterobacter aerogenes KCTC 2190. J Bacteriol 194:2373–2374. doi: 10.1128/JB.00028-12 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J et al (2012) Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J Bacteriol 194:2736–2737. doi: 10.1128/JB.00027-12 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Martins A, Spengler G, Martins M, Rodrigues L, Viveiros M, Davin-Regli A, Chevalier J, Couto I et al (2010) Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes. Int J Antimicrob Agents 36:313–318. doi: 10.1016/j.ijantimicag.2010.06.036 PubMedCrossRefGoogle Scholar
  37. 37.
    Masi M, Pagès J-M, Pradel E (2006) Production of the cryptic EefABC efflux pump in Enterobacter aerogenes chloramphenicol-resistant mutants. J Antimicrob Chemother 57:1223–1226. doi: 10.1093/jac/dkl139 PubMedCrossRefGoogle Scholar
  38. 38.
    He GX, Thorpe C, Walsh D, Crow R, Chen H, Kumar S, Varela MF (2011) EmmdR, a new member of the MATE family of multidrug transporters, extrudes quinolones from Enterobacter cloacae. Arch Microbiol 193:759–765. doi: 10.1007/s00203-011-0738-1 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pérez A, Canle D, Latasa C, Poza M, Beceiro A, del Mar TM, Fernández A, Mallo S et al (2007) Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical Isolate. Antimicrob Agents Chemother 51:3247–3253. doi: 10.1128/aac.00072-07 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pérez A, Poza M, Aranda J, Latasa C, Medrano FJ, Tomás M, Romero A, Lasa I et al (2012) Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob Agents Chemother 56:6256–6266. doi: 10.1128/AAC.01085-12 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Veleba M, De Majumdar S, Hornsey M, Woodford N, Schneiders T (2013) Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Antimicrob Chemother 68:1011–1018. doi: 10.1093/jac/dks530 PubMedCrossRefGoogle Scholar
  42. 42.
    Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, Garnotel E, Molitor A, Pagès JM (2008) Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9:750–759. doi: 10.2174/138945008785747824 PubMedCrossRefGoogle Scholar
  43. 43.
    Valade E, Davin-Regli A, BJ M, Pagès JM (2013) Bacterial membrane, a key for controlling drug influx and efflux. In: Gualerzi CO, Brandi L, Fabbretti A, Pon CL (eds) Antibiotics – targets, mechanisms and resistance. Wiley Publications, Weinheim, pp 217–240. doi: 10.1002/9783527659685.ch9 CrossRefGoogle Scholar
  44. 44.
    Masi M, Pagès JM (2013) Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C – TolC case. Open Microbiol J 7:22–33. doi: 10.2174/1874285801307010022 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Guerin F, Lallement C, Isnard C, Dhalluin A, Cattoir V, Giard JC (2016) Landscape of resistance-nodulation-cell division (RND)-type efflux pumps in Enterobacter cloacae complex. Antimicrob Agents Chemother 60:2373–2382. doi: 10.1128/AAC.02840-15 Google Scholar
  46. 46.
    Jacoby GA, Mills DM, Chow N (2004) Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3203–3206. doi: 10.1128/AAC.48.8.3203-3206.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi: 10.1016/j.bcp.2005.12.008 PubMedCrossRefGoogle Scholar
  48. 48.
    Pagès JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794:826–833. doi: 10.1016/j.bbapap.2008.12.011 PubMedCrossRefGoogle Scholar
  49. 49.
    Pagès JM, Amaral L, Fanning S (2011) An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat Gram-negative resistant bacteria. Curr Med Chem 18:2969–2980. doi: 10.2174/092986711796150469 Google Scholar
  50. 50.
    Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi: 10.1038/nrmicro3380 PubMedCrossRefGoogle Scholar
  51. 51.
    Bialek-Davenet S, Marcon E, Leflon-Guibout V, Lavigne JP, Bert F, Moreau R, Nicolas-Chanoine MH (2011) In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 55:2795–2802. doi: 10.1128/AAC.00156-11 Google Scholar
  52. 52.
    Pagès JM, Lavigne JP, Leflon-Guibout V, Marcon E, Bert F, Noussair L, Nicolas-Chanoine MH (2009) Efflux pump, the masked side of β-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS One 4:e4817. doi: 10.1371/journal.pone.0004817 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chevalier J, Pagès JM, Eyraud A, Malléa M (2000) Membrane permeability modifications are involved in antibiotic resistance in Klebsiella pneumoniae. Biochem Biophys Res Commun 274:496–499. doi: 10.1006/bbrc.2000.3159 PubMedCrossRefGoogle Scholar
  54. 54.
    Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54:177–183. doi: 10.1128/AAC.00715-09 PubMedCrossRefGoogle Scholar
  55. 55.
    De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, Spence S, Monahan A et al (2015) Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog 11:e1004627. doi: 10.1371/journal.ppat.1004627 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Blair JM, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJ (2015) Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother 70:421–431. doi: 10.1093/jac/dku380 CrossRefGoogle Scholar
  57. 57.
    Bialek S, Lavigne JP, Chevalier J, Marcon E, Leflon-Guibout V, Davin A, Moreau R, Pagès JM et al (2010) Membrane efflux and influx modulate both multidrug resistance and virulence of Klebsiella pneumoniae in a Caenorhabditis elegans model. Antimicrob Agents Chemother 54:4373–4378. doi: 10.1128/AAC.01607-09 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lavigne JP, Sotto A, Nicolas-Chanoine MH, Bouziges N, Bourg G, Davin-Regli A, Pagès JM (2012) Membrane permeability, a pivotal function involved in antibiotic resistance and virulence in Enterobacter aerogenes clinical isolates. Clin Microbiol Infect 18:539–545. doi: 10.1111/j.1469-0691.2011.03607.x PubMedCrossRefGoogle Scholar
  59. 59.
    Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi: 10.1128/CMR.00117-14 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kumarevel T, Tanaka T, Nishio M, Gopinath SC, Takio K, Shinkai A, Kumar PK, Yokoyama S (2008) Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7. J Struct Biol 161:9–17. doi: 10.1016/j.jsb.2007.08.017 PubMedCrossRefGoogle Scholar
  61. 61.
    Martin RG, Rosner JL (2001) The AraC transcriptional activators. Curr Opin Microbiol 4:132–137. doi: 10.1016/S1369-5274(00)00178-8 PubMedCrossRefGoogle Scholar
  62. 62.
    Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R et al (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356. doi: 10.1128/MMBR.69.2.326-356.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Alekshun MN, Levy SB (2004) The Escherichia coli mar locus – antibiotic resistance and more. ASM News 70:451–456Google Scholar
  64. 64.
    Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050. doi: 10.1016/j.cell.2007.03.004 PubMedCrossRefGoogle Scholar
  65. 65.
    Vinué L, McMurry LM, Levy SB (2013) The 216-bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 345:49–55. doi: 10.1111/1574-6968.12182 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Alekshun MN, Levy SB (1997) Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41:2067–2075PubMedPubMedCentralGoogle Scholar
  67. 67.
    Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3Å resolution. Nat Struct Biol 8:710–714. doi: 10.1038/90429 PubMedCrossRefGoogle Scholar
  68. 68.
    Barbosa TM, Levy SB (2000) Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182:3467–3474. doi: 10.1128/JB.182.12.3467-3474.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Schneiders T, Barbosa TM, McMurry LM, Levy SB (2004) The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J Biol Chem 279:9037–9042. doi: 10.1074/jbc.M313602200 PubMedCrossRefGoogle Scholar
  70. 70.
    Chollet R, Bollet C, Chevalier J, Malléa M, Pagès JM, Davin-Regli A (2002) mar Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob Agents Chemother 46:1093–1097. doi: 10.1128/AAC.46.4.1093-1097.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gaudu P, Moon N, Weiss B (1997) Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J Biol Chem 272:5082–5086. doi: 10.1074/jbc.272.8.5082 Google Scholar
  72. 72.
    Martin RG, Gillette WK, Rhee S, Rosner JL (1999) Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441. doi: 10.1046/j.1365-2958.1999.01599.x PubMedCrossRefGoogle Scholar
  73. 73.
    Martin RG, Gillette WK, Rosner JL (2000) Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 35:623–634. doi: 10.1046/j.1365-2958.2000.01732.x PubMedCrossRefGoogle Scholar
  74. 74.
    Michan C, Manchado M, Pueyo C (2002) SoxRS down-regulation of rob transcription. J Bacteriol 184:4733–4738. doi: 10.1128/JB.184.17.4733-4738.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B (2001) A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (serovar Typhimurium). Antimicrob Agents Chemother 45:38–43. doi: 10.1128/AAC.45.1.38-43.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Koutsolioutsou A, Peña-Llopis S, Demple B (2005) Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. Antimicrob Agents Chemother 49:2746–2752. doi: 10.1128/AAC.49.7.2746-2752.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ariza RR, Li Z, Ringstad N, Demple B (1995) Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 177:1655–1661PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R (1995) Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 61:2302–2307PubMedPubMedCentralGoogle Scholar
  79. 79.
    Jair KW, Yu X, Skarstad K, Thony B, Fujita N, Ishihama A, Wolf RE Jr (1996) Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 178:2507–2513PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bennik MH, Pomposiello PJ, Thorne DF, Demple B (2000) Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J Bacteriol 182:3794–3801. doi: 10.1128/JB.182.13.3794-3801.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    George AM, Hall RM, Stokes HW (1995) Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 141:1909–1920. doi: 10.1099/13500872-141-8-1909 PubMedCrossRefGoogle Scholar
  82. 82.
    Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619. doi: 10.1046/j.1365-2958.2003.03531.x PubMedCrossRefGoogle Scholar
  83. 83.
    Ruzin A, Visalli MA, Keeney D, Bradford PA (2005) Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49:1017–1022. doi: 10.1128/AAC.49.3.1017-1022.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Chollet R, Chevalier J, Bollet C, Pagès JM, Davin-Regli A (2004) RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48:2518–2523. doi: 10.1128/AAC.48.7.2518-2523.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schneiders T, Amyes SG, Levy SB (2003) Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 47:2831–2837. doi: 10.1128/AAC.47.9.2831-2837.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Källman O, Motakefi A, Wretlind B, Kalin M, Olsson-Liljequist B, Giske CG (2008) Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. J Antimicrob Chemother 62:986–990. doi: 10.1093/jac/dkn296 PubMedCrossRefGoogle Scholar
  87. 87.
    Yassien MA, Ewis HE, Lu CD, Abdelal AT (2002) Molecular cloning and characterization of the Salmonella enterica serovar Paratyphi B rma gene, which confers multiple drug resistance in Escherichia coli. Antimicrob Agents Chemother 46:360–366. doi: 10.1128/AAC.46.2.360-366.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A (2014) Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 58:1707–1712. doi: 10.1128/AAC.01803-13 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneiders T (2011) Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents 38:39–45. doi: 10.1016/j.ijantimicag.2011.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ricci V, Tzakas P, Buckley A, Piddock LJ (2006) Ciprofloxacin-resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 50:38–42. doi: 10.1128/AAC.50.1.38-42.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lawler AJ, Ricci V, Busby SJ, Piddock LJ (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557. doi: 10.1093/jac/dkt069 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147. doi: 10.1093/jac/dkm167 PubMedCrossRefGoogle Scholar
  93. 93.
    Hansen LH, Johannesen E, Burmolle M, Sørensen AH, Sørensen SJ (2004) Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337. doi: 10.1128/AAC.48.9.3332-3337.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    De Majumdar S, Veleba M, Finn S, Fanning S, Schneiders T (2013) Elucidating the regulon of multidrug resistance regulator RarA in Klebsiella pneumoniae. Antimicrob Agents Chemother 57:1603–1609. doi: 10.1128/AAC.01998-12 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Stoorvogel J, van Bussel MJ, Tommassen J, van de Klundert JA (1991) Molecular characterization of an Enterobacter cloacae outer membrane protein (OmpX). J Bacteriol 173:156–160PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Stoorvogel J, van Bussel MJ, van de Klundert JA (1991) Biological characterization of an Enterobacter cloacae outer membrane protein (OmpX). J Bacteriol 173:161–167PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dupont M, Dé E, Chollet R, Chevalier J, Pagès JM (2004) Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated. FEBS Lett 569:27–30. doi: 10.1016/j.febslet.2004.05.047 PubMedCrossRefGoogle Scholar
  98. 98.
    Dupont M, James CE, Chevalier J, Pagès JM (2007) An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother 51:3190–3198. doi: 10.1128/AAC.01481-06 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701. doi: 10.1128/MMBR.66.4.671-701.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Martin RG, Rosner JL (1997) Fis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob. J Bacteriol 179:7410–7419PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513. doi: 10.1016/j.addr.2005.04.004 PubMedCrossRefGoogle Scholar
  102. 102.
    Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A (2004) Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238:267–272. doi: 10.1111/j.1574-6968.2004.tb09766.x Google Scholar
  103. 103.
    Sheng ZK, Hu F, Wang W, Guo Q, Chen Z, Xu X, Zhu D, Wang M (2014) Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother 58:6982–6985. doi: 10.1128/AAC.03808-14 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Webber MA, Piddock LJ (2001) Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob Agents Chemother 45:1550–1552. doi: 10.1128/AAC.45.5.1550-1552.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cohen SP, Levy SB, Foulds J, Rosner JL (1993) Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 175:7856–7862PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sulavik MC, Gambino LF, Miller PF (1994) Analysis of the genetic requirements for inducible multiple-antibiotic resistance associated with the mar locus in Escherichia coli. J Bacteriol 176:7754–7756PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Prouty AM, Brodsky IE, Manos J, Belas R, Falkow S, Gunn JS (2004) Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol Med Microbiol 41:177–185. doi: 10.1016/j.femsim.2004.03.002 PubMedCrossRefGoogle Scholar
  108. 108.
    Seoane AS, Levy SB (1995) Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol 177:3414–3419PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yamasaki S, Nikaido E, Nakashima R, Sakurai K, Fujiwara D, Fujii I, Nishino K (2013) The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nat Commun 4:2078. doi: 10.1038/ncomms3078 PubMedCrossRefGoogle Scholar
  110. 110.
    Bornet C, Davin-Regli A, Bosi C, Pagès JM, Bollet C (2000) Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J Clin Microbiol 38:1048–1052PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bornet C, Chollet R, Malléa M, Chevalier J, Davin-Regli A, Pagès JM, Bollet C (2003) Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 301:985–990. doi: 10.1016/S0006-291X(03)00074-3 PubMedCrossRefGoogle Scholar
  112. 112.
    Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 101:9994–9999. doi: 10.1073/pnas.0400375101 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hinchliffe P, Symmons MF, Hughes C, Koronakis V (2013) Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 67:221–242. doi: 10.1146/annurev-micro-092412-155718 PubMedCrossRefGoogle Scholar
  114. 114.
    Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489. doi: 10.1146/annurev.biochem.73.011303.074104 PubMedCrossRefGoogle Scholar
  115. 115.
    Hasdemir UO, Chevalier J, Nordmann P, Pagès JM (2004) Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 42:2701–2706. doi: 10.1128/JCM.42.6.2701-2706.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Martins M, Santos B, Martins A, Viveiros M, Couto I, Cruz A, Pagès JM, Molnar J et al (2006) An instrument-free method for the demonstration of efflux pump activity of bacteria. In Vivo 20:657–664PubMedGoogle Scholar
  117. 117.
    Martins M, Viveiros M, Couto I, Costa SS, Pacheco T, Fanning S, Pagès JM, Amaral L (2011) Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo 25:171–178PubMedGoogle Scholar
  118. 118.
    Martins M, McCusker MP, Viveiros M, Couto I, Fanning S, Pagès JM, Amaral L (2013) A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol J 7:72–82. doi: 10.2174/1874285801307010072 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ocaktan A, Yoneyama H, Nakae T (1997) Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in Pseudomonas aeruginosa. J Biol Chem 272:21964–21969. doi: 10.1074/jbc.272.35.21964 PubMedCrossRefGoogle Scholar
  120. 120.
    Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116. doi: 10.1128/AAC.45.1.105-116.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Misra R, Morrison KD, Cho HJ, Khuu T (2015) Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J Bacteriol 197:2479–2488. doi: 10.1128/JB.02456-14 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bedard J, Wong S, Bryan LE (1987) Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrob Agents Chemother 31:1348–1354. doi: 10.1128/AAC.31.9.1348 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bohnert JA, Karamian B, Nikaido H (2010) Optimized Nile red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrob Agents Chemother 54:3770–3775. doi: 10.1128/AAC.00620-10 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lieutaud A, Guinoiseau E, Lorenzi V, Giuliani MC, Lome V, Brunel JM, Luciani A, Casanova J et al (2013) Inhibitors of antibiotic efflux by AcrAB-TolC in Enterobacter aerogenes. Anti-Infect Agents 11:168–178. doi: 10.2174/2211352511311020011 CrossRefGoogle Scholar
  125. 125.
    Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S (1986) Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29:535–538. doi: 10.1128/AAC.29.3.535 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hirai K, Suzue S, Irikura T, Iyobe S, Mitsuhashi S (1987) Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 31:582–586. doi: 10.1128/AAC.31.4.582 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB (1989) Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 33:1318–1325. doi: 10.1128/AAC.33.8.1318 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Diver JM, Piddock LJ, Wise R (1990) The accumulation of five quinolone antibacterial agents by Escherichia coli. J Antimicrob Chemother 25:319–333. doi: 10.1093/jac/25.3.319 PubMedCrossRefGoogle Scholar
  129. 129.
    Chapman JS, Georgopapadakou NH (1989) Fluorometric assay for fleroxacin uptake by bacterial cells. Antimicrob Agents Chemother 33:27–29. doi: 10.1128/AAC.33.1.27 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Chevalier J, Malléa M, Pagès JM (2000) Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 348(Pt 1):223–227. doi: 10.1042/bj3480223 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kaščáková S, Maigre L, Chevalier J, Réfrégiers M, Pagès JM (2012) Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution. PLoS One 7:e38624. doi: 10.1371/journal.pone.0038624 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cinquin B, Maigre L, Pinet E, Chevalier J, Stavenger RA, Mills S, Refregiers M, Pagès JM (2015) Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci Rep 5:17968. doi: 10.1038/srep17968
  133. 133.
    Pagès JM, Kascàkovà S, Maigre L, Allam A, Alimi M, Chevalier J, Galardon E, Réfrégiers M et al (2013) New peptide-based antimicrobials for tackling drug resistance in bacteria: single-cell fluorescence imaging. ACS Med Chem Lett 4:556–559. doi: 10.1021/ml400073g PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Chevalier J, Atifi S, Eyraud A, Mahamoud A, Barbe J, Pagès JM (2001) New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J Med Chem 44:4023–4026. doi: 10.1021/jm010911z PubMedCrossRefGoogle Scholar
  135. 135.
    Mahamoud A, Chevalier J, Davin-Regli A, Barbe J, Pagès JM (2006) Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 7:843–847. doi: 10.2174/138945006777709557 PubMedCrossRefGoogle Scholar
  136. 136.
    Chevalier J, Bredin J, Mahamoud A, Malléa M, Barbe J, Pagès JM (2004) Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 48:1043–1046. doi: 10.1128/AAC.48.3.1043-1046.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Gallo S, Chevalier J, Mahamoud A, Eyraud A, Pagès JM, Barbe J (2003) 4-Alkoxy and 4-thioalkoxyquinoline derivatives as chemosensitizers for the chloramphenicol-resistant clinical Enterobacter aerogenes 27 strain. Int J Antimicrob Agents 22:270–273. doi: 10.1016/S0924-8579(03)00215-2 PubMedCrossRefGoogle Scholar
  138. 138.
    Ghisalberti D, Mahamoud A, Chevalier J, Baitiche M, Martino M, Pagès JM, Barbe J (2006) Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates. Int J Antimicrob Agents 27:565–569. doi: 10.1016/j.ijantimicag.2006.03.010 PubMedCrossRefGoogle Scholar
  139. 139.
    Malléa M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Barbe J, Pagès JM (2003) Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805. doi: 10.1042/bj20030963 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim H-S, Nikaido H, Peet NP et al (2015) Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem 23:2024–2034. doi: 10.1016/j.bmc.2015.03.016 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Husain F, Nikaido H (2010) Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol Microbiol 78:320–330. doi: 10.1111/j.1365-2958.2010.07330.x PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Husain F, Bikhchandani M, Nikaido H (2011) Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J Bacteriol 193:5847–5849. doi: 10.1128/JB.05759-11 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593. doi: 10.1038/nature01050 PubMedCrossRefGoogle Scholar
  144. 144.
    Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. doi: 10.1038/nature05076 PubMedCrossRefGoogle Scholar
  145. 145.
    Nagano K, Nikaido H (2009) Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 106:5854–5858. doi: 10.1073/pnas.0901695106 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569. doi: 10.1038/nature10641 PubMedGoogle Scholar
  147. 147.
    Brunel JM, Lieutaud A, Lome V, Pagès JM, Bolla JM (2013) Polyamino geranic derivatives as new chemosensitizers to combat antibiotic resistant Gram-negative bacteria. Bioorg Med Chem 21:1174–1179. doi: 10.1016/j.bmc.2012.12.030 PubMedCrossRefGoogle Scholar
  148. 148.
    Opperman TJ, Kwasny SM, Kim HS, Nguyen ST, Houseweart C, D’Souza S, Walker GC, Peet NP et al (2014) Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 58:722–733. doi: 10.1128/AAC.01866-13 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58:6224–6234. doi: 10.1128/AAC.03283-14 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421. doi: 10.3389/fmicb.2015.00421 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Venter H, Mowla R, Ohene-Agyei T, Ma S (2015) RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6:377. doi: 10.3389/fmicb.2015.00377 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pagès JM, Peslier S, Keating TA, Lavigne JP, Nichols WW (2016) Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 60:1349–1359. doi: 10.1128/AAC.01585-15 PubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM (2011) Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett 585:1682–1690. doi: 10.1016/j.febslet.2011.04.054 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anne Davin-Regli
    • 1
  • Muriel Masi
    • 1
  • Suzanne Bialek
    • 2
    • 3
  • Marie-Hélène Nicolas-Chanoine
    • 2
    • 3
  • Jean-Marie Pagès
    • 1
    Email author
  1. 1.Transporteurs Membranaires, Chimiorésistance et Drug DesignAix Marseille Univ, IRBA, Facultés de Médecine et de PharmacieMarseilleFrance
  2. 2.Service de MicrobiologieHôpital BeaujonClichyFrance
  3. 3.UMR 1149, Université Paris VIIParisFrance

Personalised recommendations