Visual Builder of Rules for Spacecraft Onboard Real-Time Knowledge Base

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 57)

Abstract

Fault tolerance of spacecraft remains one of the most complex problems in space missions. There are several ways to implement the “onboard intelligence allowing the recovery of a spacecraft in case of abnormal situations caused by hardware or software failures. The most common but inflexible way is “to disperse” the recovery logic in the source code of the flight control software. Our approach implies using onboard real-time knowledge base. The rules of the knowledge base could be added or refined from Earth over the radio channel on a timely basis. Currently, the rules of an onboard knowledge base should be specified in a table form, which entails some misunderstandings in the mission team and consequently leads to errors. The improved approach presented in the paper provides special tools–the visualizer and the visual builder of rules. The approach allows space mission operation engineers without special mathematical or programming background to define, visualize and refine knowledge base rules in a very easy manner. Tools prototypes are currently introduced at JSC Information Satellite Systems, Russia.

Keywords

Real-Time onboard knowledge base Visual builder Spacecraft control system Spacecraft’s fault tolerance feature Autonomous control 

References

  1. 1.
  2. 2.
    Kozlov, D.I., Anshakov, G.P., Mostovoy, Y.A.: Upravlenie kosmicheskymi apparatami zondirovaniya Zemly: Komputerniye tekhnologii (In Russian). Mashinostroenie, Moscow (1998)Google Scholar
  3. 3.
    Kirilin, A.N., Akhmetov, R.N., Sollogub, A.V., Makarov, V.P.: Metody obespecheniya zhivuchesty nizkoorbitalnykh avtomaticheskykh KA zondirovaniya Zemly (In Russian). Mashinostroenie, Moscow (2010)Google Scholar
  4. 4.
    Akhmetov, R.N., Makarov, V.P., Sollogub, A.V.: Principles of the earth observation satellites control in contingencies. Inf. Control Syst. 1, 16–22 (2012)Google Scholar
  5. 5.
    Eickhoff, J.: Onboard Computers. Onboard Software and Satellite Operations. An Introduction. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Luger, G.F., Stubblefield, W.A.: Artificial Intelligence and the Design of Expert Systems. Benjamin/Cummings Publishing Co, Redwood City, CA (1989)MATHGoogle Scholar
  7. 7.
    Watanabe, S.: Knowing and Guessing. Wiley, New York (1969)MATHGoogle Scholar
  8. 8.
    Lambert-Torres, G., Abe, J.M., et al. (eds.): Advances in Technological Applications of Logical and Intelligent Systems: Selected Papers from the Sixth Congress on Logic Applied to Technology. Series Frontiers in Artificial Intelligence and Applications, vol. 186. IOS Press (2008)Google Scholar
  9. 9.
    Tomayko, J.E.: Computers in Space: Journeys with NASA. Alpha Books, Indianapolis, Indiana (1994)Google Scholar
  10. 10.
    Tomayko, J.E.: Computers Take Flight: A History of NASA’s Pioneering Digital Fly-By-Wire Project. NASA History Office, Washington, D.C. (2000)Google Scholar
  11. 11.
  12. 12.
    Lisitsyna, L., Lyamin, A., Skshidlevsky, A.: Estimation of Student Functional State in Learning Management System by Heart Rate Variability Method. In: Neves-Silva, R., Tsihrintzis, G.A., Uskov, V., Howlett, R.J., Jain, L.C. (eds.) Smart Digital Futures 2014, vol. 262, pp. 726–731. IOS Press (2014)Google Scholar
  13. 13.
    Lisitsyna, L., Lyamin, A.: Approach to Development of Effective E-Learning Courses. In: Neves-Silva, R., Tsihrintzis, G.A., Uskov, V., Howlett, R.J., Jain, L.C. (eds.) Smart Digital Futures 2014, vol. 262, pp. 732–738. IOS Press (2014)Google Scholar
  14. 14.
    Khartov, V.V.: Autonomnoe upravlenie kosmicheskymi apparatami svyazi, retranslyacii i navigacii (In Russian). Aviakosmicheskoe priborostroenie (Aerospace Instrument-Making), 6, 12–23 (2006)Google Scholar
  15. 15.
    Smith, R.K., Muscettola, N.: Knowledge Acquisition for the Onboard Planner of an Autonomous Spacecraft. Technical Report, American Association for Artificial Intelligence WS98-03 (1998)Google Scholar
  16. 16.
    Koczela, L.I., Burnett, G.I.: Advanced Space Missions and Computer Systems. IEEE Trans Aerosp. Electron. Syst. AES-4(3), 456–467 (1968)Google Scholar
  17. 17.
    Sghairi, M., de Bonneval, A.: Challenges in building fault-tolerant flight control system for a civil aircraft. IAENG Int. J. Comput. Sci. 35(4), 120–125 (2008)Google Scholar
  18. 18.
    Koltashev, A.A.: Effectivnaya technologiya upravleniya cyclom zhizni bortovogo programmnogo obespechenia sputnikov svyazi i navigacii (In Russian). Aviakosmicheskoe priborostroenie (Aerospace Instrument-Making), 12, 20–25 (2006)Google Scholar
  19. 19.
    Tyugashev, A.A., Ermakov, I.E., Ilyin, I.I.: Ways to Get More Reliable and Safe Software in Aerospace Industry. In: Program Semantics, Specification and Verification: Theory and Applications (PSSV 2012), pp. 121–129. Nizhni Novgorod, Russia (2012)Google Scholar
  20. 20.
    Kransner, S., Bernard, D.E.: Integrating autonomy technologies into an embedded spacecraft system-flight software system engineering for new millennium. In: IEEE Aerospace Conference, vol. 2, pp. 409–420. IEEE Press, Snowmass (1997)Google Scholar
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    Hayes-Roth, B.: An Architecture for Adaptive Intelligent Systems. Artif. Intell. 72, 329–365 (1995)CrossRefGoogle Scholar
  25. 25.
    Nakamatsu, K., Abe, J.M. (eds.): Advances in Logic Based Intelligent Systems: Selected Papers of LAPTEC 2005. IOS Press (2005)Google Scholar
  26. 26.
    Grabot, B., Geneste, L., Dupeux, A.: Experimental design, expert system and neural network approaches: comparison for the choice of parameters. In: International Conference on Systems, Man and Cybernetics ‘Systems Engineering in the Service of Humans’, vol. 4, pp. 15–20. Le Touquet, France (1993)Google Scholar
  27. 27.
    Nakamatsu, K., Jain, L.C. (eds.): The Handbook on Reasoning-Based Intelligent Systems. World Scientific (2013)Google Scholar
  28. 28.
    Bianchini, M., Maggini, M., Scarselli, F. (eds.): Innovations in Neural Information Paradigms and Applications. Springer-Verlag Berlin Heidelberg (2009)Google Scholar
  29. 29.
    Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks learn to localize faces. Pattern Recognit. Lett. 26–12, 1885–1895 (2005)CrossRefGoogle Scholar
  30. 30.
    Hartmann, G.L.: Fault Tolerant Hardware/Software Architectures for Flight Critical Functions. Introduction/Overview. In: Fault Tolerant Hardware/Software Architectures for Flight Critical functions. AGARD Lecture Series No.143. NATO Advisory Group for Aerospace Research and Development. Laughton, Essex, UK (1985)Google Scholar
  31. 31.
    Lemos, J.M., Neves-Silva, R., Igreja, J.M.: Adaptive Control of Solar Energy Collector Systems. Springer International Publishing (2014)Google Scholar
  32. 32.
    Pospelov, D.A.: Situational Control: Theory and Practice. Batelle Memorial Institute, Columbus, OH (1986)Google Scholar
  33. 33.
    Kochura, E.V.: Razrabotka macroprogramm integralnogo upravleniya KA (In Russian). Vestnik SibAU 1, 105–107 (2011)Google Scholar
  34. 34.
    Parondzhanov, V.D.: Druzhelyubnye algoritmy, ponyatnye kazhdomu. Kak uluchshit’ rabotu uma bez lishnih hlopot (In Russian). DMK Press, Moscow (2010)Google Scholar
  35. 35.
    Tyugashev, A.A.: Graficheskiye yazyki programmirovania i ih primenenie v sisitemah upravlenia realnogo vremeni (In Russian). Russian Academy of Sciences, Samara, Russia (2009)Google Scholar
  36. 36.
    Shadbolt, N., Schreiber, G. (eds).: Advances in Knowledge Acquisition: 9th European Knowledge Acquisition Workshop, EKAW ‘96, Springer, New York (1996)Google Scholar
  37. 37.
    Ruiz, P.P., Foguem, B.K., Grabot, B.: Generating knowledge in maintenance from Experience Feedback. Knowl. Based Syst 68, 4–20 (2014)CrossRefGoogle Scholar
  38. 38.
    Osipov, G.S.: Priobretenie znaniy intellectualnymi systemami (In Russian). Nauka, Moscow (1997)Google Scholar
  39. 39.
    Chassiakos, A.P., Vagiotas, P.: A knowledge-based system for maintenance planning of highway concrete bridges. Adv. Eng. Softw. 36(11–12), 740–749 (2005)CrossRefGoogle Scholar
  40. 40.
    Drucker, J.: Graphesis: Visual Forms of Knowledge Production. Harvard University Press, Boston (2014)Google Scholar
  41. 41.
    Chein, M., Mugnier, M.L.: Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs. Springer, Berlin (2008)MATHGoogle Scholar
  42. 42.
    Lengler, R., Eppler, M.: Towards a periodic table of visualization methods for management. In: IASTED Proceedings of the Conference on Graphics and Visualization in Engineering (GVE 2007), pp. 83–88. ACTA Press, USA (2007)Google Scholar
  43. 43.
    Eppler, M.J., Burkhard, R.A.: Visual representations in knowledge management: framework and cases. J. Knowl. Manag. 11(4), 112–122 (2007)CrossRefGoogle Scholar
  44. 44.
    Nobécourt, J., Biébow, B.: Mdws: A modeling language to build a formal ontology in either description logics or conceptual graphs. In: Knowledge Engineering and Knowledge Management Methods, Models, and Tools. LNCS, vol. 1937, pp. 57–64. Springer, Heidelberg (2002)Google Scholar
  45. 45.
    Pfeiffer, H.D., Hartley, H.D.: Visual CP representation of knowledge. In: Bernhard Ganter, Guy W. Mineau (eds). In: 8th International Conference on Conceptual Structures, ICCS 2000. LNCS, vol. 1867, pp.1211–1237. Springer, Heidelberg (2000)Google Scholar
  46. 46.
    Travers, M.: A visual representation for knowledge structures. In: HYPERTEXT’89, pp. 147–158. ACM, NY (1989)Google Scholar
  47. 47.
    Finn, A.: Legal issues for military intelligent decision-making technologies. In: Knowledge-Based Intelligent Information and Engineering Systems. 12th International Conference KES2008. LNCS, vol. 5177, Part I, pp. 14–15. Springer-Verlag Germany (2008)Google Scholar
  48. 48.
    Parondzhanov, V.D., Trunov, Y.V.: Systema upravlenia razgonnogo blocka Fregat (In Russian). Vestnik NPO imeni S.A. Lavochkina (NPO Lavochkina Bulletin), 1 (22), 16–25 (2014)Google Scholar
  49. 49.
    Martin, J.: Application Development without Programmers. Prentice-Hall, PTR Upper Saddle River, NJ, USA (1982)Google Scholar
  50. 50.
    Kalentyev, A.A., Tyugashev, A.A., Bogatov, A.V., Shulyndin, A.V.: Visual toolset for real-time onboard programs verification support. In: Program Semantics, Specification and Verification: Theory and Applications (PSSV 2011), Saint Petersburg, pp. 120–127. Yaroslavl State University, Russia (2011)Google Scholar
  51. 51.
    Sullivan, G.A.: A knowledge-based control architecture with interactive reasoning functions. IEEE Trans. Knowl. Data Eng. 8(1), 179–183 (1996)Google Scholar
  52. 52.
    Nakamatsu, K., Abe, J.M., Akama, S.: A logical reasoning system of process before-after relation based on a paraconsistent annotated logic program bf-EVALPSN. Int. J. Knowl. Based Intell. Eng. Syst. 15(3), 145–163 (2011)Google Scholar
  53. 53.
    Giurca, A., Gasevic, D.: Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches. Information Science Reference. Hershey, New York (2008)Google Scholar
  54. 54.
    Neves-Silva, R., Rato, L.M., Lemos, J.M.: Time Scaling Internal State Predictive Control of a Solar Plant. IFAC Control Eng. Pract. (Special Issue on IFAC-B’02 Prize Winning Applications), 11(12), pp. 1459–1467 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Technologies and Control SystemsITMO UniversitySaint PetersburgRussia

Personalised recommendations