Mignon: A Fast Decentralized Content Consumption Estimation in Large-Scale Distributed Systems

  • Stéphane Delbruel
  • Davide Frey
  • François Taïani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9687)

Abstract

Although many fully decentralized content distribution systems have been proposed, they often lack key capabilities that make them difficult to deploy and use in practice. In this paper, we look at the particular problem of content consumption prediction, a crucial mechanism in many such systems. We propose a novel, fully decentralized protocol that uses the tags attached by users to on-line content, and exploits the properties of self-organizing kNN overlays to rapidly estimate the potential of a particular content without explicit aggregation.

Keywords

Decentralized systems Content consumption Estimation 

References

  1. 1.
    Global internet phenomena report: 2h 2013. Technical report, Sandvine Incorporated (2013)Google Scholar
  2. 2.
    Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Gossiping personalized queries. In: EDBT (2010)Google Scholar
  4. 4.
    Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L.: A peer-to-peer recommender system for self-emerging user communities based on gossip overlays. J. Comput. Syst. Sci. 79(2), 291–308 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010. LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Boutet, A., Frey, D., Guerraoui, R., Jégou, A., Kermarrec, A.-M.: WhatsUp decentralized instant news recommender. In: IPDPS (2013)Google Scholar
  7. 7.
    Brodersen, A., Scellato, S., Wattenhofer, M.: YouTube around the world: geographic popularity of videos. In: WWW (2012)Google Scholar
  8. 8.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., Moon, S.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: IMC (2007)Google Scholar
  9. 9.
    Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS (2002)Google Scholar
  10. 10.
    Delbruel, S., Frey, D., Taïani, F.: Exploring the geography of tags in youtube views. Research report RT-0461, IRISA, Inria Rennes, April 2015Google Scholar
  11. 11.
    Delbruel, S., Frey, D., Taïani, F.: Exploring the use of tags for georeplicated content placement. In: IC2E (2016)Google Scholar
  12. 12.
    El Dick, M., Pacitti, E., Kemme, B.: Flower-cdn: a hybrid p2p overlay for efficient query processing in cdn. In: EDBT 2009, pp. 427–438. ACM (2009)Google Scholar
  13. 13.
    Frey, D., Goessens, M., Kermarrec, A.-M.: Behave: behavioral cache for web content. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 89–103. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Frey, D., Guerraoui, R., Kermarrec, A.-M., Koldehofe, B., Mogensen, M., Monod, M., Quéma, V.: Heterogeneous gossip. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 42–61. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Geisler, G., Burns, S.: Tagging video: conventions and strategies of the youtube community. In: ACM/IEEE-CS Joint Conference on Digital Libraries (2007)Google Scholar
  16. 16.
    Google Inc.: Google peering and content delivery. https://peering.google.com/about/ggc.html. Accessed 5 Feb 2015
  17. 17.
    Greenaway, S., Thelwall, M., Ding, Y.: Tagging youtube - a classification of tagging practice on youtube. In: International Conference on Sciento- & Informetrics (2009)Google Scholar
  18. 18.
    Huguenin, K., Kermarrec, A.-M., Kloudas, K., Taïani, F.: Content and geographical locality in user-generated content sharing systems. In: NOSSDAV (2012)Google Scholar
  19. 19.
    Idreos, S., Koubarakis, M., Tryfonopoulos, C.: P2P-diet: an extensible P2P service that unifies ad-hoc and continuous querying in super-peer networks. In: SIGMOD, pp. 933–934. ACM (2004)Google Scholar
  20. 20.
    Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks (2004)Google Scholar
  21. 21.
    Jelasity, M., Montresor, A., Babaoglu, O.: T-man: gossip-based fast overlay topology construction. Comput. Netw. 53(13), 2321–2339 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based peer sampling. ACM TOCS 25, 8 (2007)CrossRefGoogle Scholar
  23. 23.
    Kreitz, G., Niemelä, F.: Spotify - large scale, low latency, P2P music-on-demand streaming. In: P2P (2010)Google Scholar
  24. 24.
    Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., et al.: Oceanstore: an architecture for global-scale persistent storage. ACM Sigplan Not. 35(11), 190–201 (2000)CrossRefGoogle Scholar
  25. 25.
    Le Merrer, E., Kermarrec, A.-M., Massoulie, L.: Peer to peer size estimation in large, dynamic networks: a comparative study. In: HPDC (2006)Google Scholar
  26. 26.
    Massoulié, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting, sampling in overlay networks: random walk methods. In: PODC (2006)Google Scholar
  27. 27.
    Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-scale overlay networks. In: DSN (2004)Google Scholar
  28. 28.
    Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P., Rodriguez, P.: The little engine(s) that could: scaling online social networks. In: SIGCOMM (2010)Google Scholar
  29. 29.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: SIGCOMM (2001)Google Scholar
  30. 30.
    Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
    Saroiu, S., Gummadi, K.P., Gribble, S.D.: Measuring and analyzing the characteristics of napster and gnutella hosts. Multimed. Syst. 9(2), 170–184 (2003)CrossRefGoogle Scholar
  32. 32.
    Sastry, N., Yoneki, E., Crowcroft, J.: Buzztraq: predicting geographical access patterns of social cascades using social networks. In: SNS (2009)Google Scholar
  33. 33.
    Scellato, S., Mascolo, C., Musolesi, M., Crowcroft, J.: Track globally, deliver locally: improving content delivery networks by tracking geographic social cascades. In: WWW (2011)Google Scholar
  34. 34.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001, pp. 149–160 (2001)Google Scholar
  35. 35.
    Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: inexpensive membership management for unstructured p2p overlays. J. Netw. Syst. Manage. 13(2), 197–217 (2005)CrossRefGoogle Scholar
  36. 36.
    Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Youtube, LCC: Statistics, viewership. http://www.youtube.com/yt/press/statistics.html. Accessed 5 Feb 2015
  38. 38.
    Zhao, M., Aditya, P., Chen, A., Lin, Y., Haeberlen, A., Druschel, P., Maggs, B., Wishon, B., Ponec, M.: Peer-assisted content distribution in Akamai NetSession. In: IMC (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Stéphane Delbruel
    • 1
  • Davide Frey
    • 2
  • François Taïani
    • 1
  1. 1.Université de Rennes 1, IRISA – ESIRRennesFrance
  2. 2.InriaRennesFrance

Personalised recommendations