Design of Capability Delivery Adjustments

  • Jānis Grabis
  • Jānis Kampars
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 249)


Capabilities are designed for ensuring that business services can be delivered to satisfy business performance objectives in different circumstances. Run-time adjustments are used to adapt capability delivery to these specific circumstances. The paper elaborates the concept of the capability delivery adjustments on the basis of capability meta-model proposed as a part of the Capability Driven Development approach. The types of adjustments are identified as their specifications are provided. An example of adjustments modeling is developed.


Capability Adaptation Run-time Context 


  1. 1.
    Bērziša, S., Bravos, G., González, T., Czubayko, U., España, S., Grabis, J., Henkel, M., Jokste, L., Kampars, J., Koç, H., Kuhr, J., Llorca, C., Loucopoulos, P., Pascual, R.J., Pastor, O., Sandkuhl, K., Simic, H., Stirna, J., Giromé, F.V., Zdravkovic, J.: Capability driven development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57, 15–25 (2015)CrossRefGoogle Scholar
  2. 2.
    Zdravkovic, J., Stirna, J., Henkel, M., Grabis, J.: Modeling business capabilities and context dependent delivery by cloud services. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 369–383. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud applications. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 644–651 (2012)Google Scholar
  4. 4.
    Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)CrossRefGoogle Scholar
  5. 5.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41–50 (2003)CrossRefGoogle Scholar
  6. 6.
    Heylighen, F.: Web dictionary of cybernetics and systems; principia cybernetica web (2004). Accessed 27 Dec 2013
  7. 7.
    de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7(1), 8–61 (2012)CrossRefGoogle Scholar
  9. 9.
    Weyns, D., Ahmad, T.: Claims and evidence for architecture-based self-adaptation: a systematic literature review. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 249–265. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., Vogel, T.: Software engineering processes for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Eddin, M.C.: Towards a taxonomy of dynamic reconfiguration approaches. J. Softw. 8(9), 2202–2207 (2013)CrossRefGoogle Scholar
  12. 12.
    Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)CrossRefGoogle Scholar
  13. 13.
    Mori, M.: A software lifecycle process for context-aware adaptive systems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European conference on Foundations of Software Engineering, pp. 412–415 (2011)Google Scholar
  14. 14.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, approaches, and styles. In: Proceedings of ICSE Companion 2008, Companion of the 30th International Conference on Software Engineering, pp. 899–910 (2008)Google Scholar
  15. 15.
    Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)CrossRefGoogle Scholar
  16. 16.
    Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.: Behavioral adaptation of information systems through goal models. Inf. Syst. 37, 767–783 (2012)CrossRefGoogle Scholar
  17. 17.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66, 438–466 (2008)CrossRefGoogle Scholar
  18. 18.
    Muller, R., Greiner, U., Rahm, E.: AGENT WORK: a workflow system supporting rule-based workflow adaptation. Data Knowl. Eng. 51, 223–256 (2004)CrossRefGoogle Scholar
  19. 19.
    Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.: Dynamic adaptation of service compositions with variability models. J. Syst. Softw. 91, 24–47 (2014)CrossRefGoogle Scholar
  20. 20.
    Döhring, M., Reijers, H.A., Smirnov, S.: Configuration vs. adaptation for business process variant maintenance: an empirical study. Inf. Syst. 39, 108–133 (2014)CrossRefGoogle Scholar
  21. 21.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: The Provop approach. J. Softw. Maint. Evol. 22(6–7), 519–546 (2010)Google Scholar
  22. 22.
    Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Smanchat, S., Ling, S., Indrawan, M.: A survey on context-aware workflow adaptations. In: Proceedings of MoMM 2008, pp. 414–417 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Information TechnologyRiga Technical UniversityRigaLatvia

Personalised recommendations