Advertisement

Scheduling Games for Concurrent Systems

  • Kasper DokterEmail author
  • Sung-Shik Jongmans
  • Farhad Arbab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9686)

Abstract

A scheduler is an algorithm that assigns at any time a set of processes to a set of processors. Processes usually interact with each other, which introduces dependencies amongst them. Typically, such dependencies induce extra delays that the scheduler needs to avoid. Specific types of applications, like streaming applications, synthesize a scheduler from a formal model that is aware of these interactions. However, such interaction-specific information is not available for general types of applications. In this paper, we propose an interaction aware scheduling framework for generic concurrent applications. We formalize the amount of work performed by an application as constraints. We use these constraints to generate a graph, and view scheduler synthesis as solving a game on this graph that is played between the scheduler and the application. We illustrate that our framework is expressive enough to subsume an established scheduling framework for streaming programs.

Keywords

Scheduling Game theory Synthesis Constraint automata 

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 169–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Programming 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bamakhrama, M.A., Stefanov, T.P.: On the hard-real-time scheduling of embedded streaming applications. Des. Autom. Embed. Syst. 17(2), 221–249 (2013)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Synthesis of optimal strategies using hytech. Electron. Notes Theor. Comput. Sci. 119(1), 11–31 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F.: Faster algorithms for mean-payoff games. Form. Method. Syst. Des. 38(2), 97–118 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Sun, J., Sun, M.: A hybrid model of connectors in cyber-physical systems. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 59–74. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Crovella, M., Frangioso, R., Harchol-Balter, M.: Connection scheduling in web servers. Proc. USITS 10, 243–254 (1999)Google Scholar
  11. 11.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series. Springer Science & Business Media, Heidelberg (2009)zbMATHGoogle Scholar
  12. 12.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gantt, H.L.: Work, Wages, and Profits. Engineering Magazine Co., New York (1913)Google Scholar
  14. 14.
    Henzinge, T.A.: The theory of hybrid automata. Verification of Digital and Hybrid Systems. NATO ASI Series. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Jha, N.K.: Low power system scheduling and synthesis. In: Proceedings of ICCAD, pp. 259–263. IEEE (2001)Google Scholar
  16. 16.
    Koehler, C., Clarke, D.: Decomposing port automata. In: Proceedings of SAC, pp. 1369–1373. ACM (2009)Google Scholar
  17. 17.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, Ernst W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming applications. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Kasper Dokter
    • 1
    Email author
  • Sung-Shik Jongmans
    • 2
    • 3
  • Farhad Arbab
    • 1
  1. 1.Centrum Wiskunde and InformaticaAmsterdamThe Netherlands
  2. 2.Open University of the NetherlandsHeerlenThe Netherlands
  3. 3.Radboud University NijmegenNijmegenThe Netherlands

Personalised recommendations