Real-Time Gaze Estimation Using Monocular Vision

  • Zhizhi GuoEmail author
  • Qianxiang Zhou
  • Zhongqi Liu
  • Xin Zhang
  • Zhaofang Xu
  • Yan Lv
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9732)


Improving the accuracy of gaze estimation and the tolerance of head motion is a common task in the field of gaze estimation. The core problem of gaze estimation is how to accurately build up the mapping relationship between image features and gaze position. To this end, we propose a method to reconstruct input features in the optimized subset as the key to our solution. The HOG feature is considered as the input feature. First, we found the closest calibration point to gaze position and constituted the optimized subset. Then, we get a set of weights that can linear reconstruct test samples in the optimized subset. And this set of weights is used to express the mapping relationship. At last, a linear equation is fitted to solve head motion problem. In this paper, the experiment results demonstrate that our system can achieve high accuracy gaze estimation with one camera.


Gaze estimation Feature reconstruction Head move compensation Optimized subset 



This research was funded by National science and technology support plan “User evaluation technology and standard research of display and control interface ergonomics”(2014BAK01B04).


  1. 1.
    Valenti, R., Gevers, T.: Accurate eye center location through invariant isocentric patterns. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1785–1798 (2012)CrossRefGoogle Scholar
  2. 2.
    Markuš, N., Frljak, M., Pandžić, I.S., et al.: Eye pupil localization with an ensemble of randomized trees. Pattern Recogn. 47(2), 578–587 (2014)CrossRefGoogle Scholar
  3. 3.
    Morimoto, C.H., Mimica, M.R.M.: Eye gaze tracking techniques for interactive applications. Comput. Vis. Image Underst. 98(1), 4–24 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhu, Z., Ji, Q.: Novel eye gaze tracking techniques under natural head movement. IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Villanueva, A., Cabeza, R.: A novel gaze estimation system with one calibration point. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(4), 1123–1138 (2008)CrossRefGoogle Scholar
  6. 6.
    Timm, F., Barth, E.: Accurate eye centre localisation by means of gradients. In: VISAPP, pp. 125–130 (2011)Google Scholar
  7. 7.
    Coutinho, F.L., Morimoto, C.H.: Improving head movement tolerance of cross-ratio based eye trackers. Int. J. Comput. Vis. 101(3), 1–23 (2012)Google Scholar
  8. 8.
    Sugano, Y., Matsushita, Y., Sato, Y.: Appearance-based gaze estimation using visual saliency. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2012)Google Scholar
  9. 9.
    Sesma-Sanchez, L., Villanueva, A., et al.: Gaze estimation interpolation methods based on binocular data. IEEE Trans. Biomed. Eng. 59(8), 2235–2243 (2012)CrossRefGoogle Scholar
  10. 10.
    Cerrolaza, J., Villanueva, A., Cabeza, R.: Taxonomic study of polynomial regressions applied to the calibration of video-oculographic systems. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 259–266. ACM (2008)Google Scholar
  11. 11.
    Ramanauskas, N., Daunys, G., Dervinis, D.: Investigation of calibration techniques in video based eye tracking system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1208–1215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Xu, L.Q., Machin, D., Sheppard, P.: A novel approach to realtime non-intrusive gaze finding. In: BMVC, pp. 428–437 (1998)Google Scholar
  13. 13.
    Tan, K., Kriegman, D., Ahuja, N.: Appearance-based eye gaze estimation. In: WACV, pp. 191–195 (2002)Google Scholar
  14. 14.
    Ren, S., Cao, X., Wei, Y., et al.: Face alignment at 3000 FPS via regressing local binary features. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1685–1692. IEEE (2014)Google Scholar
  15. 15.
    Wright, J., Ganesh, A., Zhou, Z., et al.: Demo: Robust face recognition via sparse representation. In: IEEE International Conference on Automatic Face and Gesture Recognition, Fg 08, pp. 1–2 (2008)Google Scholar
  16. 16.
    Donoho, D.L., Tsaig, Y.: Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lu, F., Sugano, Y., Okabe, T., et al.: Adaptive linear regression for appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2033–2046 (2014)CrossRefGoogle Scholar
  18. 18.
    Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21(2), 802–815 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zhizhi Guo
    • 1
    Email author
  • Qianxiang Zhou
    • 1
  • Zhongqi Liu
    • 1
  • Xin Zhang
    • 2
  • Zhaofang Xu
    • 1
  • Yan Lv
    • 1
  1. 1.School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
  2. 2.China National Institute of StandardizationBeijingChina

Personalised recommendations