Advertisement

Automatic Facial Recognition: A Systematic Review on the Problem of Light Variation

  • Kelvin S. Prado
  • Norton T. RomanEmail author
  • Valdinei F. Silva
  • João L. BernardesJr.
  • Luciano A. Digiampietri
  • Enrique M. Ortega
  • Clodoaldo A. M. Lima
  • Luis M. V. Cura
  • Marcelo M. Antunes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9732)

Abstract

In this systematic review we approach the problem of light variation in tasks related to automatic facial recognition, a feature that can significantly affect the performance of automatic systems. We then carry out a broad research on the state of the art, describing and comparing current research in this subject. The review relies on a set of processes for searching, analysing and describing research that is considered relevant to this work, and which are reported in more detail in this article. In analysing the results, we could notice that the problem of light variation is still one of the greatest challenges in the area of facial recognition, which translates in a good deal of research directly tackling this problem, trying to solve it or, at least, mitigate it somehow, so as to improve the performance of facial recognition techniques and algorithms. Finally, results also show that this is a problem of great concern by researchers in the field, insomuch that even those articles that do not directly deal with it still make explicit the researchers’ concern about it.

Keywords

Facial Recognition Local Binary Pattern Thermal Image Face Detection Light Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. Pattern Anal. Mach. Intell. IEEE Trans. 19(7), 721–732 (1997)CrossRefGoogle Scholar
  2. 2.
    Arandjelovi, O., Cipolla, R.: Colour invariants for machine face recognition. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, FG 2008, pp. 1–8, September 2008Google Scholar
  3. 3.
    Arandjelovi, O., Cipolla, R.: A pose-wise linear illumination manifold model for face recognition using video. Comput. Vis. Image Underst. 113(1), 113–125 (2009). http://dx.doi.org/10.1016/j.cviu.2008.07.010 CrossRefGoogle Scholar
  4. 4.
    Arandjelovi, O., Cipolla, R.: Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant. Pattern Recogn. 46(1), 9–23 (2013). http://dx.doi.org/10.1016/j.patcog.2012.06.024 CrossRefGoogle Scholar
  5. 5.
    Arandjelovi, O., Hammoud, R., Cipolla, R.: Thermal and reflectance based personal identification methodology under variable illumination. Pattern Recogn. 43(5), 1801–1813 (2010). http://dx.doi.org/10.1016/j.patcog.2009.11.023 CrossRefzbMATHGoogle Scholar
  6. 6.
    Arandjelović, O., Cipolla, R.: Face recognition from video using the generic shape-illumination manifold. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 27–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Barr, J.R., Bowyer, K.W., Flynn, P.J., Biswas, S.: Face recognition from video: A review. Int. J. Pattern Recogn. Artif. Intell. 26(05), 1266002 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bedagkar-Gala, A., Shah, S.K.: Part-based Spatio-temporal Model for Multi-person Re-identification. Pattern Recogn. Lett. 33(14), 1908–1915 (2012). http://dx.doi.org/10.1016/j.patrec.2011.09.005 CrossRefGoogle Scholar
  9. 9.
    Bicego, M., Grosso, E., Lagorio, A., Brelstaff, G., Brodo, L., Tistarelli, M.: Distinctiveness of faces: a computational approach. ACM Trans. Appl. Percept. 5(2), 11:1–11:18 (2008). http://doi.acm.org/10.1145/1279920.1279925 CrossRefGoogle Scholar
  10. 10.
    Bk, S., CorvE, E., BrMond, F., Thonnat, M.: Boosted human re-identification using riemannian manifolds. Image Visi. Comput. 30(6–7), 443–452 (2012). http://dx.doi.org/10.1016/j.imavis.2011.08.008 CrossRefGoogle Scholar
  11. 11.
    Heo, J., Savvides, M., VijayaKumar, B.: Performance evaluation of face recognition using visual and thermal imagery with advanced correlation filters. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops, p. 9, June 2005Google Scholar
  12. 12.
    Jain, A.K., Li, S.Z.: Handbook of face recognition, vol. 1. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    Louis, W., Plataniotis, K.: Frontal face detection for surveillance purposes using dual Local Binary Patterns features. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3809–3812, September 2010Google Scholar
  14. 14.
    Louis, W., Plataniotis, K., Ro, Y.M.: Enhanced weakly trained frontal face detector for surveillance purposes. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ). pp. 1–8, Jul 2010Google Scholar
  15. 15.
    Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G.: A systematic review process for software engineering. In: Proceedings of the 2nd Experimental Software Engineering Latin American Workshop (ESELAW 2005), Brazil (2005)Google Scholar
  16. 16.
    Mishra, R., Subban, R.: Face detection for video summary using enhancement-based fusion strategy under varying illumination conditions. In: 2014 International Conference on Science Engineering and Management Research (ICSEMR), pp. 1–8, November 2014Google Scholar
  17. 17.
    Wang, C., Li, Y.: Combine image quality fusion and illumination compensation for video-based face recognition. Neurocomput 73(7–9), 1478–1490 (2010). http://dx.doi.org/10.1016/j.neucom.2009.11.010 CrossRefGoogle Scholar
  18. 18.
    Wang, C., Wang, Y., Zhang, Z., Wang, Y.: Incremental learning patch-based bag of facial words representation for face recognition in videos. Multimedia Tools Appl. 72(3), 2439–2467 (2014). http://dx.doi.org/10.1007/s11042-013-1562-1 CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Miao, Z., Wu, Q.J., Wan, Y., Tang, Z.: Low-resolution face recognition: a review. Vis. Comput. 30(4), 359–386 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Miao, Z., Zhang, C.: Extraction of high-resolution face image from low-resolution and variant illumination video sequences. In: Congress on Image and Signal Processing, CISP 2008. vol. 4, pp. 97–101. IEEE (2008)Google Scholar
  21. 21.
    Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recogn. 42(11), 2876–2896 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003). http://doi.acm.org/10.1145/954339.954342 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kelvin S. Prado
    • 1
  • Norton T. Roman
    • 1
    Email author
  • Valdinei F. Silva
    • 1
  • João L. BernardesJr.
    • 1
  • Luciano A. Digiampietri
    • 1
  • Enrique M. Ortega
    • 2
  • Clodoaldo A. M. Lima
    • 1
  • Luis M. V. Cura
    • 3
  • Marcelo M. Antunes
    • 2
  1. 1.University of São PauloSão PauloBrazil
  2. 2.Central Kung-Fu AcademyCampinasBrazil
  3. 3.Campo Limpo Paulista FacultyCampo Limpo PaulistaBrazil

Personalised recommendations