Advertisement

Transition Times for Manipulation Tasks in Hybrid Interfaces

  • Allan ChristensenEmail author
  • Simon A. Pedersen
  • Per Bjerre
  • Andreas K. Pedersen
  • Wolfgang Stuerzlinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9732)

Abstract

Compared to the mouse, uninstrumented in-air interaction has been shown to be slower and less precise for pointing. Yet, in-air input is preferable or advantageous in some interaction scenarios. Thus, we examine a three-device hybrid setup involving the mouse, keyboard, and a Leap Motion. We performed a user study to quantify the costs associated with transitioning between these interaction devices, while performing simple 2D manipulation tasks using the mouse and Leap Motion. We found that transitioning to and from the Leap Motion takes on average 0.87 s longer than those between the mouse and keyboard.

Keywords

In-air interfaces Device transitions Hybrid user interfaces 

References

  1. 1.
    Bassily, D., Georgoulas, C., Guettler, J., Linner, T., Bock, T.: Intuitive and adaptive robotic arm anipulation using the leap motion controller. In: International Symposium on Robotics, pp. 1–7 (2014)Google Scholar
  2. 2.
    Bérard, F., Wang, G., Cooperstock, J.R.: On the limits of the human motor control precision: the search for a device’s human resolution. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS, vol. 6947, pp. 107–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Brown, M.A., Stuerzlinger, W.: The performance of un-instrumented in-air pointing. In: Graphics Interface 2014, pp. 59–66 (2014)Google Scholar
  4. 4.
    Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user performance time with interactive systems. CACM 23, 396–410 (1980)CrossRefGoogle Scholar
  5. 5.
    Codd-Downey, R., Stuerzlinger, W.: LeapLook: A free-hand gestural travel technique using the leap motion finger tracker. In: Spatial User Interaction Symposium, p. 153 (2014)Google Scholar
  6. 6.
    Coelho, J.C., Verbeek, F.J.: Pointing task evaluation of leap motion controller in 3D virtual environment. In: Chi Sparks 2014 Conference, pp. 78–85 (2014)Google Scholar
  7. 7.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Exp. Psychol. 47, 381–391 (1954)CrossRefGoogle Scholar
  8. 8.
    Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., Sodnik, J.: An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors 14(2), 3702–3720 (2014)CrossRefGoogle Scholar
  9. 9.
    Han, J., Gold, N.: Lessons learned in exploring the leap motion TM sensor for gesture-based instrument design. In: New Interfaces for Musical Expression, pp. 371–374 (2014)Google Scholar
  10. 10.
    Hodson, H.: Leap motion hacks show potential of new gesture tech. New Sci. 218(2911), 21 (2013)CrossRefGoogle Scholar
  11. 11.
    Holleis, P., Otto, F., Hussmann, H., Schmidt, A.: A keystroke-level model for advanced mobile phone interaction. In: CHI 2007, pp. 1505-1514 (2007)Google Scholar
  12. 12.
    MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction. Hum.-Comput. Interact. 7, 91–139 (1992)CrossRefGoogle Scholar
  13. 13.
    Pareek, S., Sharma, V.: Development of CAD Interface Using Leap Motion. http://vaibhav-sharma.com/resources/development_of_a_cad_interface_using_leapmotion.pdf. Accessed 27 October 2014
  14. 14.
    Pohl, H., Murray-Smith, R.: Focused and casual interactions: Allowing users to vary their level of engagement. In: CHI 2013, pp. 2223–2232 (2013)Google Scholar
  15. 15.
    Pohl, H., Rohs, M., Murray-Smith, R.: Casual interaction: Scaling fidelity for low-engagement interactions. In: Workshop on Peripheral Interaction: Shaping the Research and Design Space (2014)Google Scholar
  16. 16.
    Sambrooks, L., Wilkinson, B.: Comparison of gestural, touch, and mouse interaction with Fitts’ law. In: Australian Computer-Human Interaction, pp. 119-122 (2012)Google Scholar
  17. 17.
    Schlattmann, M., Zheng, T., Broekelschen, J., Klein, R.: An investigation of Bare-Hands-Interaction in traditional 3D game genres. IADIS Int. J. WWW/Internet 8(2), 1–16 (2010)Google Scholar
  18. 18.
    Seixas, M., Cardoso, J.C.S., Dias, M.T.G.: The Leap motion movement for 2D pointing tasks: Characterisation and comparison to other devices. In: Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems (2015)Google Scholar
  19. 19.
    Weichert, F., Bachmann, D., Rudak, B., Fisseler, D.: Analysis of the accuracy and robustness of the leap motion controller. Sensors 13(5), 6380–6393 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhao, Y.J., Shuralyov, D., Stuerzlinger, W.: Comparison of multiple 3D rotation methods. In: IEEE Virtual Environment Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 1–5 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Allan Christensen
    • 1
    Email author
  • Simon A. Pedersen
    • 1
  • Per Bjerre
    • 1
  • Andreas K. Pedersen
    • 1
  • Wolfgang Stuerzlinger
    • 2
  1. 1.Aalborg UniversityAalborgDenmark
  2. 2.Simon Fraser UniversityBurnabyCanada

Personalised recommendations