Advertisement

Human-Machine Networks: Towards a Typology and Profiling Framework

  • Aslak Wegner Eide
  • J. Brian Pickering
  • Taha Yasseri
  • George Bravos
  • Asbjørn Følstad
  • Vegard Engen
  • Milena Tsvetkova
  • Eric T. Meyer
  • Paul Walland
  • Marika Lüders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9731)

Abstract

In this paper we outline an initial typology and framework for the purpose of profiling human-machine networks, that is, collective structures where humans and machines interact to produce synergistic effects. Profiling a human-machine network along the dimensions of the typology is intended to facilitate access to relevant design knowledge and experience. In this way the profiling of an envisioned or existing human-machine network will both facilitate relevant design discussions and, more importantly, serve to identify the network type. We present experiences and results from two case trials: a crisis management system and a peer-to-peer reselling network. Based on the lessons learnt from the case trials we suggest potential benefits and challenges, and point out needed future work.

Keywords

Human-machine networks Typology Network profiling Human-centred design Case trials Human-computer interaction 

Notes

Acknowledgements

This work has been conducted as part of the HUMANE project (http://humane2020.eu), which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 645043.

References

  1. 1.
    Shneiderman, S.B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Pearson New International Edition. Pearson, Essex (2013)Google Scholar
  2. 2.
    Lüders, M.: Networking and notworking in social intranets: user archetypes and participatory divides. First Monday 18(8) (2013). doi: 10.5210/fm.v18i8.4693
  3. 3.
    Tayebi, A.: Communihood: a less formal or more local form of community in the age of the internet. J. Urban Technol. 20(2), 77–91 (2013)CrossRefGoogle Scholar
  4. 4.
    Collier, D., LaPorte, J., Seawright, J.: Putting typologies to work: concept formation, measurement, and analytic rigor. Polit. Res. Q. 65(1), 217–232 (2012)CrossRefGoogle Scholar
  5. 5.
    Følstad, A., Eide, A.W., Pickering, J.B., Bravos, G., Tsvetkova, M., Gavilanes, R., Yasseri, T., Engen, V.: HUMANE Typology and Method v1. Technical report, HUMANE project (2015). http://humane2020.eu/publications/
  6. 6.
    ISO: Ergonomics of Human–System Interaction — Part 210: Human-Centred Design for Interactive Systems. International Organization for Standardization, Geneva (2010)Google Scholar
  7. 7.
    Leonardi, P.M.: Materiality, sociomateriality, and socio-technical systems: what do these terms mean? How are they related? Do we need them? In: Leonardi, P.M., Nardi, B.A., Kallinikos, J. (eds.) Materiality and Organizing: Social Interaction in a Technological World, pp. 25–48. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  8. 8.
    Latour, B.: Reassembling the Social-an Introduction to Actor-Network-Theory. Oxford University Press, Oxford (2005)Google Scholar
  9. 9.
    Smart, P.R., Simperl, E., Shadbolt, N.: A taxonomic framework for social machines. In: Miorandi, D., Maltese, V., Rovatsos, M., Nijholt, A., Stewart, J. (eds.) Social Collective Intelligence: Combining the Powers of Humans and Machines to Build a Smarter Society. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Tsvetkova, M., Yasseri, T., Meyer, E.T., Pickering, J.B., Engen, V., Walland, P., Lüders, M., Følstad, A., Bravos, G.: Understanding Human-Machine Networks: A Cross-Disciplinary Survey (2015). http://arxiv.org/abs/1511.05324
  11. 11.
    Seffah, A.: Patterns of HCI Design and HCD Design of Patterns: Bridging HCI Design and Model-Driven Software Engineering. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Engen, V., Pickering J.B., Walland, P.: Machine agency in human-machine networks; impacts and trust implications. In: Kurosu, M. (ed.) HCII 2016, Part III. LNCS, vol. 9733, pp. 96–106. Springer, Heidelberg (2016)Google Scholar
  13. 13.
    Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aslak Wegner Eide
    • 1
  • J. Brian Pickering
    • 2
  • Taha Yasseri
    • 3
  • George Bravos
    • 4
    • 5
  • Asbjørn Følstad
    • 1
  • Vegard Engen
    • 2
  • Milena Tsvetkova
    • 3
  • Eric T. Meyer
    • 3
  • Paul Walland
    • 2
  • Marika Lüders
    • 1
  1. 1.SINTEFOsloNorway
  2. 2.IT Innovation CentreUniversity of SouthamptonSouthamptonUK
  3. 3.Oxford Internet InstituteUniversity of OxfordOxfordUK
  4. 4.Athens Technology CenterAthensGreece
  5. 5.Hellenic American UniversityAthensGreece

Personalised recommendations