Advertisement

Pedagogical Document Classification and Organization Using Domain Ontology

  • Ali Shariq ImranEmail author
  • Zenun Kastrati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9753)

Abstract

One of the challenges faced by today’s web is the abundance of unstructured and unorganized information available on the Internet in form of educational documents, lecture notes, presentation slides, and multimedia recordings. Accessing and retrieving the massive amount of such resources are not an easy task, especially educational resources of pedagogical nature. Much of the pedagogical content available on Internet comes from blogs, wikis, posts with little or no metadata, that suffer from the same dilemma. The content is out there but way out of the reach of the intended audience. For content to be readily available, it has to be properly organized into different categories and structured into an appropriate format using metadata. This paper addresses this issue by proposing an automated approach using ontology-based document classification. The paper presents a case study and describes how our proposed ontology model can be used to classify educational documents into predefined categories.

Keywords

Domain ontology Document classification eLearning SEMCON 

References

  1. 1.
    Raghavan, P.: Extracting and exploiting structure in text search. In: SIGMOD Conference, p. 635 (2003)Google Scholar
  2. 2.
    Workshop on “Ontologies for Intelligent Educational Systems”, in conjunction with AI-ED 1999, Le Mans, France, 18–19 July 1999Google Scholar
  3. 3.
    Workshop on “Concepts and Ontologies in Web-based Educational Systems”, in conjunction with ICCE 2002, Auckland, New Zealand, 3–6 December 2002Google Scholar
  4. 4.
    Workshop on “Semantic Web for Web-based Learning”, in conjunction with CAISE 2003, Klagenfurt/Velden, Austria, June 2003Google Scholar
  5. 5.
    Workshop on “Applications of Semantic Web Technologies for Web-based ITS”, in conjunction with ITS 2004, Macei-Alagoas, Brazil, 30 August–03 September 2004Google Scholar
  6. 6.
    Workshop on “Learning Design and Topic Maps”, Oslo, Norway, 26–27 January 2005Google Scholar
  7. 7.
    Anderson, T., Whitelock, D.M.: The educational semantic web: visioning and practicing the future of education. J. Interact. Media Educ. 2004(1), p.Art. 1 (2004). http://doi.org/10.5334/2004-1
  8. 8.
    Sampson, D.G., Lytras, M.D., Wagner, G., Diaz, P.: Special issue on Ontologies and the Semantic Web for E-learning. J. Educ. Technol. Soc. 7(4) (2004)Google Scholar
  9. 9.
    Al-Yahya, M., George, M., Alfaries, A.: Ontologies in e-learning: review of the literature. Int. J. Softw. Eng. Appl. 9(2), 67–84 (2015)Google Scholar
  10. 10.
    Dexter, H., Davies, I.: An ontology-based curriculum knowledge-base for managing complexity and change. In: 9th IEEE International Conference on Advanced Learning Technologies, pp. 136–140 (2009)Google Scholar
  11. 11.
    Fernandez-Breis, J.T., Castellanos-Nieves, D., Hernandez-Franco, J., Soler-Segovia, C., Robles-Redondo, M., Gonzalez-Martinez, R., Prendes-Espinosa, M.P.: A semantic platform for the management of the educative curriculum. Expert Syst. Appl. 39(5), 6011–6019 (2012)CrossRefGoogle Scholar
  12. 12.
    Lee, M.-C., Ye, D., Wang, T.: Java learning object ontology. In: 5th IEEE International Conferences on Advanced Learning Technologies, pp. 538–542 (2005)Google Scholar
  13. 13.
    Sameh, A.: Ontology-based feedback e-Learning system for mobile computing. In: Mastorakis, N., Mladenov, V., Kontargyri, V.T. (eds.) Proceedings of the European Computing Conference. LNEE, vol. 27, pp. 479–488. Springer, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Isotani, S., Mizoguchi, R., Capeli, O., Isotani, N., Jaques, P.: A semantic web-based authoring tool to facilitate the planning of collaborative learning scenarios compliant with learning theories. Comput. Educ. 63, 267–284 (2013)CrossRefGoogle Scholar
  15. 15.
    Cobos, C., Rodriguez, O., Rivera, J., Betancourt, J., Mendoza, M., Leon, E., Viedma, E.: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes. Inf. Process. Manag. 49(3), 607–625 (2013)CrossRefGoogle Scholar
  16. 16.
    Castellanos-Nieves, D., Fernandez, J., Garcia, R., Martinez, R., Moreno, M.: Semantic web technologies for supporting learning assessment. Inf. Sci. 181(9), 1517–1537 (2011)CrossRefGoogle Scholar
  17. 17.
    Litherland, K., Carmichael, P., Garcia, A.: Ontology-based assessment for accounting: outcomes of a pilot study and future prospects. J. Account. Educ. 31(2), 162–176 (2013)CrossRefGoogle Scholar
  18. 18.
    Lee, M., Tsai, K., Wang, T.: A practical ontology query expansion algorithm for semantic aware learning objects retrieval. Comput. Educ. 50(4), 1240–1257 (2008)CrossRefGoogle Scholar
  19. 19.
    Del, M., Breis, J., Castellanos, D., Morales, F., Espinosa, M.: Semantic web technologies for generating feedback in online assessment environments. Knowl. Based Syst. 33, 152–165 (2012)CrossRefGoogle Scholar
  20. 20.
    Kazi, H., Haddawy, P., Suebnukarn, S.: Leveraging a domain ontology to increase the quality of feedback in an intelligent tutoring system. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 75–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Grubii, A., Stankov, S., Žitko, B.: Adaptive courseware model for intelligent e-learning systems. In: International Conference on Computing, e-Learning and Emerging Technologies, vol. 16, no. 1 (2014)Google Scholar
  22. 22.
    Nganji, J., Brayshaw, M., Tompsett, B.: Ontology driven disability-aware e-learning personalisation with ONTODAPS. Campus-Wide Inf. Syst. 30(1), 17–34 (2012)CrossRefGoogle Scholar
  23. 23.
    Panagiotopoulos, I., Kalou, A., Pierrakeas, C., Kameas, A.: An ontology-based model for student representation in intelligent tutoring systems for distance learning. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 296–305. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Raju, P., Ahmed, V.: Enabling technologies for developing next generation learning object repositories for construction. Autom. Constr. 22, 247–257 (2012)CrossRefGoogle Scholar
  25. 25.
    Arch-Int, N., Arch-Int, S.: Semantic ontology mapping for interoperability of learning resource systems using a rule-based reasoning approach. Expert Syst. Appl. 40(18), 7428–7443 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kastrati, Z., Imran, A.S., Yayilgan, S.Y.: SEMCON: semantic and contextual objective metric. In: 9th IEEE International Conference on Semantic Computing, pp. 65–68 (2015)Google Scholar
  27. 27.
    Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  28. 28.
    Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers, Norwell (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    Deng, S., Peng, H.: Document classification based on support vector machine using a concept vector model. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 473–476 (2006)Google Scholar
  30. 30.
    Kastrati, Z., Imran, A.S., Yayilgan, S.Y.: An improved concept vector space model for ontology based classification. In: 11th International Conference on Signal Image Technology and Internet Based Systems, Bangkok, Thailand (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Computer Science and Media TechnologyNorwegian University of Science and Technology (NTNU)GjøvikNorway

Personalised recommendations