Evolution of Translation in Mitochondria

  • Aldo E. García-Guerrero
  • Angélica Zamudio-Ochoa
  • Yolanda Camacho-Villasana
  • Rodolfo García-Villegas
  • Adrián Reyes-Prieto
  • Xochitl Pérez-MartínezEmail author


Mitochondria arose from bacterial endosymbionts. One of the consequences of the endosymbiosis event was that the ancestral bacterial genome underwent deep transformations, including massive gene transfer to the host nucleus and gene losses and rearrangements. Upon eukaryotic origin, the gene content, size and shape of mitochondrial genomes evolved differently throughout eukaryote’s radiation into many lineages. As a consequence of this phenomenon, the mechanisms for gene expression in mitochondria have also co-evolved and diverged from the ancestral bacterial systems. Mitochondria possess the complete machinery to translate reduced sets of messenger RNAs transcribed in these organelles. Although this machinery retained many features from bacteria, it has also undergone modifications across eukaryote lineages, rendering this process highly specialized and regulated. In this chapter, we summarize and discuss the general characteristics of the mitochondrial translation machinery. We also discuss the current knowledge on mitochondrial translation across different eukaryotic phyla and compare it with its bacterial counterpart to throw light on the evolution of translation in mitochondria.


Mitochondrial Genome Land Plant Small Ribosomal Subunit Mitochondrial Translation Mammalian Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a research grant from Consejo Nacional de Ciencia y Tecnología (47514 to XP-M) and fellowships 255917 (to AE. G-G), 298954 (to AZ-O) and 250726 (to RG-V); Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), UNAM (IN204414 to XP-M). AE.G-G and RG-V are students of the Programade Doctoradoen Ciencias Biomédicas, UNAM.


  1. 1.
    Hori H, Osawa S. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol. 1987;4:445–72.PubMedGoogle Scholar
  2. 2.
    Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283:1476–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Degli Esposti M. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol. 2014;6:3238–3251. doi: 10.1093/gbe/evu257.Google Scholar
  4. 4.
    Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Moller IM. The plant mitochondrial proteome. Trends Plant Sci. 2005; 10:36-43. doi: 10.1016/j.tplants.2004.12.002.Google Scholar
  5. 5.
    Premsler T, Zahedi RP, Lewandrowski U, Sickmann A. Recent advances in yeast organelle and membrane proteomics. Proteomics. 2009;9:4731–43. doi: 10.1002/pmic.200900201.CrossRefPubMedGoogle Scholar
  6. 6.
    Szklarczyk R, Huynen MA. Mosaic origin of the mitochondrial proteome. Proteomics. 2010;10:4012–24. doi: 10.1002/pmic.201000329.CrossRefPubMedGoogle Scholar
  7. 7.
    Gawryluk RM, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics. 2014;109:400–16. doi: 10.1016/j.jprot.2014.07.005.CrossRefPubMedGoogle Scholar
  8. 8.
    Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the Phylum Apicomplexa. Mol Biochem Parasitol. 2013;188:26–33. doi: 10.1016/j.molbiopara.2013.02.006.CrossRefPubMedGoogle Scholar
  9. 9.
    Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80. doi: 10.1093/nar/27.8.1767.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie. 2014;100:107–20. doi: 10.1016/j.biochi.2013.09.016.CrossRefPubMedGoogle Scholar
  11. 11.
    Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 2013;5:418–38. doi: 10.1093/gbe/evt008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bohnert M, Pfanner N, van der Laan M. Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol. 2015;33:92–102.CrossRefPubMedGoogle Scholar
  13. 13.
    Stuart K, Feagin JE. Mitochondrial DNA of kinetoplastids. Int Rev Cytol. 1992;141:65–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Burger G, Forget L, Zhu Y, Gray MW, Lang BF. Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA. 2003;100:892–7. doi: 10.1073/pnas.0336115100.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Campbell WH, Gowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 1990;92:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Knight RD, Landweber LF, Yarus M. How mitochondria rede-fine the code. J Mol Evol. 2001;53:299–313.CrossRefPubMedGoogle Scholar
  17. 17.
    Bezerra AR, Guimaraes AR, Santos MA. Non-standard genetic codes define new concepts for protein engineering. Life (Basel). 2015;5:1610–28.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Inagaki Y, Ehara M, Watanabe KI, Hayashi-Ishimaru Y, Ohama T. Directionally evolving genetic code: the UGA codon from stop to tryptophan in mitochondria. J Mol Evol. 1998;47:378–84.CrossRefPubMedGoogle Scholar
  19. 19.
    Hayashi-Ishimaru Y, Ohama T, Kawatsu Y, Nakamura K, Osawa S. UAG is a sense codon in several chlorophycean mitochondria. Curr Genet. 1996;30:29–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Jacob JE, Vanholme B, Van Leeuwen T, Gheysen G. A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Res Notes. 2009;2:192.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G. The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res. 2000;10:819–31.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu W, Xing T, Zhao M, Yin X, Xia G, Wang M. Synonymous codon usage bias in plant mitochondrial genes is associated with intron number and mirrors species evolution. PLoS One. 2015;10:e0131508.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Osawa S, Ohama T, Jukes TH, Watanabe K. Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria. J Mol Evol. 1989;29:202–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM. Hungry codons promote frameshifting in human mitochondrial ribosomes. Science. 2010;327:301. doi: 10.1126/science.1180674.CrossRefPubMedGoogle Scholar
  25. 25.
    Clark-Walker GD, Weiller GF. The structure of the small mito-chondrial DNA of Kluyveromyces thermotolerans is likely to reflect the ancestral gene order in fungi. J Mol Evol. 1994;38:593–601.CrossRefPubMedGoogle Scholar
  26. 26.
    Desjardins P, Morais R. Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome. J Mol Evol. 1991;32:153–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Yokobori S, Ueda T, Feldmaier-Fuchs G, Paabo S, Ueshima R, Kondow A, Nishikawa K, Watanabe K. Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata). Genetics. 1999;153:1851–62.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Foury F, Roganti T, Lecrenier N, Purnelle B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 1998;440:325–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988;202:185–217.CrossRefPubMedGoogle Scholar
  30. 30.
    Ziaie Z, Suyama Y. The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2-terminal extension and a 108 amino acid insert. Curr Genet. 1987;12:357–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 1990;18:173–80.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Suzuki T, Miyauchi K, Suzuki T, Yokobori S, Shigi N, Kondow A, Takeuchi N, Yamagishi A, Watanabe K. Taurine-containing uridine modifications in tRNA anticodons are required to decipher non-universal genetic codes in ascidian mitochondria. J Biol Chem. 2011;286:35494–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moriya J, Yokogawa T, Wakita K, Ueda T, Nishikawa K, Crain PF, Hashizume T, Pomerantz SC, McCloskey JA, Kawai G, et al. A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry. 1994;33:2234–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Takemoto C, Spremulli LL, Benkowski LA, Ueda T, Yokogawa T, Watanabe K. Unconventional decoding of the AUA codon as me-thionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Nucleic Acids Res. 2009;37:1616–27.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Osawa S, Jukes TH. Evolution of the genetic code as affected by anticodon content. Trends Genet. 1988;4:191–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Osawa S, Ohama T, Jukes TH, Watanabe K, Yokoyama S. Evo-lution of the mitochondrial genetic code. II. Reassignment of codon AUA from isoleucine to methionine. J Mol Evol. 1989;29:373–80.CrossRefPubMedGoogle Scholar
  37. 37.
    Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol. 2007;64:662–88.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Silva RM, Miranda I, Moura G, Santos MA. Yeast as a model organism for studying the evolution of non-standard genetic codes. Brief Funct Genomic Proteomic. 2004;3:35–46.CrossRefPubMedGoogle Scholar
  39. 39.
    Miranda I, Silva R, Santos MA. Evolution of the genetic code in yeasts. Yeast. 2006;23:203–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Schultz DW, Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol. 1994;235:1377–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Schultz DW, Yarus M. On malleability in the genetic code. J Mol Evol. 1996;42:597–601.CrossRefPubMedGoogle Scholar
  42. 42.
    Jia W, Higgs PG. Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol. 2008;25:339–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Abascal F, Posada D, Knight RD, Zardoya R. Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol. 2006;4:e127.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chin JW. Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379–408.CrossRefPubMedGoogle Scholar
  45. 45.
    Hancock K, Hajduk SL. Sequence of Trypanosoma brucei tRNA genes encoding cytosolic tRNAs. Nucleic Acids Res. 1992;20:2602.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell. 1999;11:1717–30.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Martin RP, Schneller JM, Stahl AJ, Dirheimer G. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry. 1979;18:4600–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kamenski P, Kolesnikova O, Jubenot V, Entelis N, Krasheninnikov IA, Martin RP, Tarassov I. Evidence for an adaptation mechanism of mitochondrial translation via tRNA import from the cytosol. Mol Cell. 2007;26:625–37.CrossRefPubMedGoogle Scholar
  49. 49.
    Rubio MA, Rinehart JJ, Krett B, Duvezin-Caubet S, Reichert AS, Soll D, Alfonzo JD. Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc Natl Acad Sci USA. 2008;105:9186–91.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vinogradova E, Salinas T, Cognat V, Remacle C, Marechal-Drouard L. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nucleic Acids Res. 2009;37:1521–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Salinas-Giege T, Giege R, Giege P. tRNA biology in mitochondria. Int J Mol Sci. 2015;16:4518–59. doi: 10.3390/ijms16034518.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Watanabe Y, Suematsu T, Ohtsuki T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front Genet. 2014;5:109.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Giege R, Juhling F, Putz J, Stadler P, Sauter C, Florentz C. Structure of transfer RNAs: similarity and variability. Wiley Interdiscip Rev RNA. 2012;3:37–61. doi: 10.1002/wrna.103.CrossRefPubMedGoogle Scholar
  54. 54.
    Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 2014;42:7346–57. doi: 10.1093/nar/gku390.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Machnicka MA, Olchowik A, Grosjean H, Bujnicki JM. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 2014;11:1619–29. doi: 10.4161/15476286.2014.992273.CrossRefPubMedGoogle Scholar
  56. 56.
    Weber F, Dietrich A, Weil JH, Marechal-Drouard L. A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res. 1990;18:5027–30.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hazle T, Bonen L. Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants. Mol Biol Evol. 2007;24:1101–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta. 2012;1819:1035–54. doi: 10.1016/j.bbagrm.2011.11.009.CrossRefPubMedGoogle Scholar
  59. 59.
    Aphasizhev R, Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014;100:125–31. doi: 10.1016/j.biochi.2014.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Takenaka M, Zehrmann A, Verbitskiy D, Hartel B, Brennicke A. RNA editing in plants and its evolution. Annu Rev Genet. 2013;47:335–52.CrossRefPubMedGoogle Scholar
  61. 61.
    Norbury CJ. Cytoplasmic RNA: a case of the tail wagging the dog. Nat Rev Mol Cell Biol. 2013;14:643–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci. 2013;38:312–20.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA. 2011;2:818–36.CrossRefPubMedGoogle Scholar
  64. 64.
    Bandyra KJ, Luisi BF. Licensing and due process in the turnover of bacterial RNA. RNA Biol. 2013;10:627–35.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs–like members of all families, similar but different. Biochim Biophys Acta. 2010;1797:1081–5.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS. The human mitochondrial transcriptome. Cell. 2011;146:645–58.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol. 2012;69:328–38.CrossRefPubMedGoogle Scholar
  68. 68.
    Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Slomovic S, Laufer D, Geiger D, Schuster G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol. 2005;25:6427–35. doi: 10.1128/MCB.25.15.6427-6435.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gagliardi D, Stepien PP, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA stability in mitochondria: different means to an end. Trends Genet. 2004;20:260–7. doi: 10.1016/j.tig.2004.04.006.CrossRefPubMedGoogle Scholar
  72. 72.
    Etheridge RD, Aphasizheva I, Gershon PD, Aphasizhev R. 3’ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008;27:1596–608. doi: 10.1038/emboj.2008.87.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci. 2009;85:393–422. doi: 10.1016/S0079-6603(08)00810-6.CrossRefPubMedGoogle Scholar
  74. 74.
    Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem. 2003;278:1603–1611.Google Scholar
  75. 75.
    Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One. 2013;8:e78105.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schafer B, Hansen M, Lang BF. Transcription and RNA-processing in fission yeast mitochondria. RNA. 2005;11:785–95. doi: 10.1261/rna.7252205.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics. 2015;16:827.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Butow RA, Zhu H, Perlman P, Conrad-Webb H. The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome. 1989;31:757–60.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhu H, Conrad-Webb H, Liao XS, Perlman PS, Butow RA. Functional expression of a yeast mitochondrial intron-encoded protein requires RNA processing at a conserved dodecamer sequence at the 3’ end of the gene. Mol Cell Biol. 1989;9:1507–12.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Chateigner-Boutin AL, Small I. Organellar RNA editing. Wiley Interdiscip Rev RNA. 2011;2:493–506.CrossRefPubMedGoogle Scholar
  81. 81.
    Takenaka M, Verbitskiy D, Zehrmann A, Hartel B, Bayer-Csaszar E, Glass F, Brennicke A. RNA editing in plant mitochondria-connecting RNA target sequences and acting proteins. Mitochondrion. 2014;19 Pt B:191–197.Google Scholar
  82. 82.
    Read LK, Lukes J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA. 2016;7:33–51.CrossRefPubMedGoogle Scholar
  83. 83.
    Lavrov DV, Adamski M, Chevaldonne P, Adamska M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr Biol. 2016;26:86–92.CrossRefPubMedGoogle Scholar
  84. 84.
    Gray MW. Evolutionary origin of RNA editing. Biochemistry. 2012;51:5235–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Knoop V. Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages. J Syst Evol. 2013;51:1–12.CrossRefGoogle Scholar
  86. 86.
    Rudinger M, Funk HT, Rensing SA, Maier UG, Knoop V. RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics. 2009;281:473–81.CrossRefPubMedGoogle Scholar
  87. 87.
    Bentolila S, Oh J, Hanson MR, Bukowski R. Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet. 2013;9:e1003584.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Grewe F, Herres S, Viehover P, Polsakiewicz M, Weisshaar B, Knoop V. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res. 2011;39:2890–902.CrossRefPubMedGoogle Scholar
  89. 89.
    Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA re-combination in early tracheophytes. Genome Biol Evol. 2011;3:344–58.CrossRefPubMedGoogle Scholar
  90. 90.
    Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–26.CrossRefPubMedGoogle Scholar
  91. 91.
    Blum B, Bakalara N, Simpson L. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990;60:189–98.CrossRefPubMedGoogle Scholar
  92. 92.
    Liu M, Spremulli L. Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem. 2000;275:29400–6. doi: 10.1074/jbc.M002173200.CrossRefPubMedGoogle Scholar
  93. 93.
    Pfeffer S, Woellhaf MW, Herrmann JM, Forster F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun. 2015;6:6019. doi: 10.1038/ncomms7019.CrossRefPubMedGoogle Scholar
  94. 94.
    Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44. doi: 10.1016/j.cell.2009.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Tzagoloff A, Myers AM. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–85. doi: 10.1146/ Scholar
  96. 96.
    Bogenhagen DF, Martin DW, Koller A. Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab. 2014;19:618–29. doi: 10.1016/j.cmet.2014.03.013.CrossRefPubMedGoogle Scholar
  97. 97.
    De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle. 2015;14:2226–50. doi: 10.1080/15384101.2015.1053672.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kitakawa M, Isono K. The mitochondrial ribosomes. Biochimie. 1991;73:813–25. doi: 10.1016/0300-9084(91)90061-5.CrossRefPubMedGoogle Scholar
  99. 99.
    Ramulu HG, Groussin M, Talla E, Planel R, Daubin V, Brochier-Armanet C. Ribosomal proteins: toward a next generation standard for prokaryotic systematics? Mol Phylogenet Evol. 2014;75:103–17. doi: 10.1016/j.ympev.2014.02.013.CrossRefPubMedGoogle Scholar
  100. 100.
    Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol. 2011;162:53–70. doi: 10.1016/j.resmic.2010.10.004.CrossRefPubMedGoogle Scholar
  101. 101.
    van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J, Berninghausen O, Neupert W, Herrmann JM, Beckmann R. Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol Evol. 2015;7:1235–51. doi: 10.1093/gbe/evv061evv061.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res. 2007;35:4686–703. doi: 10.1093/nar/gkm441.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Brown WM, George M Jr, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA. 1979;76:1967–71.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol. 2008;6:e204.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Neiman M, Taylor DR. The causes of mutation accumulation in mitochondrial genomes. Proc Biol Sci. 2009;276:1201–9. doi: 10.1098/rspb.2008.1758.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lukes J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011;63:528–37.CrossRefPubMedGoogle Scholar
  107. 107.
    Barreto FS, Burton RS. Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol Biol Evol. 2013;30:310–4. doi: 10.1093/molbev/mss228.CrossRefPubMedGoogle Scholar
  108. 108.
    Rand DM, Haney RA, Fry AJ. Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol. 2004;19:645–53. doi: 10.1016/j.tree.2004.10.003.CrossRefPubMedGoogle Scholar
  109. 109.
    Berry S. Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta. 2003;1606:57–72. doi:S0005272803000847[pii].Google Scholar
  110. 110.
    Gabaldon T, Rainey D, Huynen MA. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol. 2005;348:857–70. doi: 10.1016/j.jmb.2005.02.067.CrossRefPubMedGoogle Scholar
  111. 111.
    Yamaguchi K, Subramanian AR. The plastid ribosomal pro-teins. Identification of all the proteins in the 50 S subunit of an orga-nelle ribosome (chloroplast). J Biol Chem. 2000;275:28466–82. doi: 10.1074/jbc.M005012200.CrossRefPubMedGoogle Scholar
  112. 112.
    Yamaguchi K, von Knoblauch K, Subramanian AR. The plastid ribosomal proteins. Identification of all the proteins in the 30 S sub-unit of an organelle ribosome (chloroplast). J Biol Chem. 2000;275:28455–65. doi: 10.1074/jbc.M004350200.CrossRefPubMedGoogle Scholar
  113. 113.
    Spirina O, Bykhovskaya Y, Kajava AV, O’Brien TW, Nierlich DP, Mougey EB, Sylvester JE, Graack HR, Wittmann-Liebold B, Fischel-Ghodsian N. Heart-specific splice-variant of a human mitochondrial ribosomal protein (mRNA processing; tissue specific splicing). Gene. 2000;261:229–34. doi: 10.1016/S0378-1119(00)00504-7.CrossRefPubMedGoogle Scholar
  114. 114.
    Mogk A, Haslberger T, Tessarz P, Bukau B. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans. 2008;36:120–5. doi: 10.1042/BST0360120.CrossRefPubMedGoogle Scholar
  115. 115.
    Daubner GM, Clery A, Allain FH. RRM-RNA recognition: NMR or crystallography and new findings. Curr Opin Struct Biol. 2013;23:100–8. doi: 10.1016/ Scholar
  116. 116.
    Kaur J, Stuart RA. Truncation of the Mrp20 protein reveals new ribosome-assembly subcomplex in mitochondria. EMBO Rep. 2011;12:950–5. doi: 10.1038/embor.2011.133.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ryden-Aulin M, Shaoping Z, Kylsten P, Isaksson LA. Ribo-some activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol Microbiol. 1993;7:983–92.CrossRefPubMedGoogle Scholar
  118. 118.
    Tobin C, Mandava CS, Ehrenberg M, Andersson DI, Sanyal S. Ribosomes lacking protein S20 are defective in mRNA binding and subunit association. J Mol Biol. 2010;397:767–76. doi: 10.1016/j.jmb.2010.02.004.CrossRefPubMedGoogle Scholar
  119. 119.
    Sorensen MA, Fricke J, Pedersen S. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol. 1998;280:561–9. doi: 10.1006/jmbi.1998.1909.CrossRefPubMedGoogle Scholar
  120. 120.
    O’Brien TW. Evolution of a protein-rich mitochondrial ribo-some: implications for human genetic disease. Gene. 2002;286:73–9. doi:S0378111901008083 [pii].Google Scholar
  121. 121.
    Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science. 2015;348:95–8. doi: 10.1126/science.aaa1193.Google Scholar
  122. 122.
    Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015;348:303–8. doi: 10.1126/science.aaa3872 Google Scholar
  123. 123.
    Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell. 2003;115:97–108. doi:S0092867403007621 [pii].Google Scholar
  124. 124.
    Schneider A, Ebert D. Covariation of mitochondrial genome size with gene lengths: evidence for gene length reduction during mitochondrial evolution. J Mol Evol. 2004;59:90–6.CrossRefPubMedGoogle Scholar
  125. 125.
    Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature. 2014;505:515–9. doi: 10.1038/nature12890.CrossRefPubMedGoogle Scholar
  126. 126.
    Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA. 2000;97:6986–93. doi:97/13/6986 [pii].Google Scholar
  127. 127.
    Antonicka H, Shoubridge EA. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep. 2015;S2211–1247:00055–8. doi: 10.1016/j.celrep.2015.01.030.Google Scholar
  128. 128.
    Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci. 2015;72:4341–67.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, Tankov S, Smirnova E, Soosaar A, Tenson T, Hauryliuk V. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Nucleic Acids Res. 2012;40:6122–34.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Hinttala R, Sasarman F, Nishimura T, Antonicka H, Brunel-Guitton C, Schwartzentruber J, Fahiminiya S, Majewski J, Faubert D, Ostergaard E, Smeitink JA, Shoubridge EA. An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase. Hum Mol Genet. 2015;24:4103–13.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Tucker EJ, Hershman SG, Kohrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;14:428–34.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Li Y, Holmes WB, Appling DR, RajBhandary UL. Initiation of protein synthesis in Saccharomyces cerevisiae mitochondria without formylation of the initiator tRNA. J Bacteriol. 2000;182:2886–92.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Lee C, Tibbetts AS, Kramer G, Appling DR. Yeast AEP3p is an accessory factor in initiation of mitochondrial translation. J Biol Chem. 2009;284:34116–25.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA. 2003;9:958–69.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Moreno JM, Sorensen HP, Mortensen KK, Sperling-Petersen HU. Macromolecular mimicry in translation initiation: a model for the initiation factor IF2 on the ribosome. IUBMB Life. 2000;50:347–54.CrossRefPubMedGoogle Scholar
  136. 136.
    Spencer AC, Spremulli LL. Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA. Nucleic Acids Res. 2004;32:5464–70.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Tibbetts AS, Oesterlin L, Chan SY, Kramer G, Hardesty B, Appling DR. Mammalian mitochondrial initiation factor 2 supports yeast mitochondrial translation without formylated initiator tRNA. J Biol Chem. 2003;278:31774–80.CrossRefPubMedGoogle Scholar
  138. 138.
    Koc EC, Burkhart W, Blackburn K, Koc H, Moseley A, Spremulli LL. Identification of four proteins from the small subunit of the mammalian mitochondrial ribosome using a proteomics approach. Protein Sci. 2001;10:471–81.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem. 2001;276:43958–69.CrossRefPubMedGoogle Scholar
  140. 140.
    Spremulli LL, Coursey A, Navratil T, Hunter SE. Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. Prog Nucleic Acid Res Mol Biol. 2004;77:211–61.CrossRefPubMedGoogle Scholar
  141. 141.
    Laursen BS, Siwanowicz I, Larigauderie G, Hedegaard J, Ito K, Nakamura Y, Kenney JM, Mortensen KK, Sperling-Petersen HU. Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli. J Mol Biol. 2003;326:543–51.CrossRefPubMedGoogle Scholar
  142. 142.
    Gaur R, Grasso D, Datta PP, Krishna PD, Das G, Spencer A, Agrawal RK, Spremulli L, Varshney U. A single mammalian mito-chondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell. 2008;29:180–90.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Roll-Mecak A, Cao C, Dever TE, Burley SK. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell. 2000;103:781–92.CrossRefPubMedGoogle Scholar
  144. 144.
    Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. Embo J. 2000;19:5233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Misselwitz R, Welfle K, Krafft C, Welfle H, Brandi L, Caserta E, Gualerzi CO. The fMet-tRNA binding domain of translational initiation factor IF2: role and environment of its two Cys residues. FEBS Lett. 1999;459:332–6.CrossRefPubMedGoogle Scholar
  146. 146.
    Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R. Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci. 2005;14:2461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Grunberg-Manago M, Dessen P, Pantaloni D, Godefroy-Colburn T, Wolfe AD, Dondon J. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol. 1975;94:461–78.CrossRefPubMedGoogle Scholar
  148. 148.
    Yassin AS, Haque ME, Datta PP, Elmore K, Banavali NK, Spremulli LL, Agrawal RK. Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1. Proc Natl Acad Sci USA. 2011;108:3918–23.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Koc EC, Spremulli LL. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J Biol Chem. 2002;277:35541–9.CrossRefPubMedGoogle Scholar
  150. 150.
    Dallas A, Noller HF. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell. 2001;8:855–64.CrossRefPubMedGoogle Scholar
  151. 151.
    Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. Embo J. 2001;20:1829–39.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA. 1999;5:82–92.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Dieckmann CL, Staples RR. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. Int Rev Cytol. 1994;152:145–81.CrossRefPubMedGoogle Scholar
  154. 154.
    Christian BE, Spremulli LL. Preferential selection of the 5’-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes. J Biol Chem. 2010;285:28379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Fox TD. Genetics of mitochondrial translation. In: Hershey JWB, Matthews MB, Sonenberg N, editors. Translational control. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1996. p. 733–58.Google Scholar
  156. 156.
    Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim Biophys Acta. 2013;1833:286–94.CrossRefPubMedGoogle Scholar
  157. 157.
    Zamudio-Ochoa A, Camacho-Villasana Y, Garcia-Guerrero AE, Perez-Martinez X. The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol. 2014;11:953–67.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Naithani S, Saracco SA, Butler CA, Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell. 2003;14:324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem. 2016; In press. doi: 10.1146/annurev-biochem-060815-014334.Google Scholar
  160. 160.
    Sanchirico ME, Fox TD, Mason TL. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. Embo J. 1998;17:5796–804.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Coffin JW, Dhillon R, Ritzel RG, Nargang FE. The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Saccharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein. Curr Genet. 1997;32:273–80.CrossRefPubMedGoogle Scholar
  162. 162.
    Costanzo MC, Bonnefoy N, Williams EH, Clark-Walker GD, Fox TD. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics. 2000;154:999–1012.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kuhl I, Dujeancourt L, Gaisne M, Herbert CJ, Bonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res. 2011;39:8029–41.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Szklarczyk R, Wanschers BF, Cuypers TD, Esseling JJ, Riemersma M, van den Brand MA, Gloerich J, Lasonder E, van den Heuvel LP, Nijtmans LG, Huynen MA. Iterative orthology predic-tion uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase. Genome Biol. 2012;13:R12.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Choquet Y, Wollman FA. Translational regulations as specific traits of chloroplast gene expression. FEBS Lett. 2002;529:39–42.CrossRefPubMedGoogle Scholar
  166. 166.
    Lefebvre-Legendre L, Choquet Y, Kuras R, Loubery S, Douchi D, Goldschmidt-Clermont M. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. Plant Physiol. 2015;167:1527–40.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Prikryl J, Rojas M, Schuster G, Barkan A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA. 2011;108:415–20.CrossRefPubMedGoogle Scholar
  168. 168.
    Weraarpachai W, Sasarman F, Nishimura T, Antonicka H, Aure K, Rotig A, Lombes A, Shoubridge EA. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am J Hum Genet. 2011;90:142–51.CrossRefGoogle Scholar
  169. 169.
    Williams EH, Butler CA, Bonnefoy N, Fox TD. Translation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p. Genetics. 2007;175:1117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Arita M, Suematsu T, Osanai A, Inaba T, Kamiya H, Kita K, Sisido M, Watanabe Y, Ohtsuki T. An evolutionary ‘intermediate state’ of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu. Nucleic Acids Res. 2006;34:5291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, Kojima S, Kaziro Y, Nyborg J, Watanabe K. An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem. 2001;276:21571–7.CrossRefPubMedGoogle Scholar
  172. 172.
    Sakurai M, Watanabe Y, Watanabe K, Ohtsuki T. A protein ex-tension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria. Biochem J. 2006;399:249–56. doi: 10.1042/BJ20060781.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Suematsu T, Sato A, Sakurai M, Watanabe K, Ohtsuki T. A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2. Nucleic Acids Res. 2005;33:4683–91.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Cristodero M, Mani J, Oeljeklaus S, Aeberhard L, Hashimi H, Ramrath DJ, Lukes J, Warscheid B, Schneider A. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function. Mol Microbiol. 2013;90:744–55.CrossRefPubMedGoogle Scholar
  175. 175.
    Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA. 2009;106:9637–42.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Esseiva AC, Naguleswaran A, Hemphill A, Schneider A. Mito-chondrial tRNA import in Toxoplasma gondii. J Biol Chem. 2004;279:42363–8.CrossRefPubMedGoogle Scholar
  177. 177.
    Pino P, Aeby E, Foth BJ, Sheiner L, Soldati T, Schneider A, Soldati-Favre D. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Mol Microbiol. 2010;76:706–18.CrossRefPubMedGoogle Scholar
  178. 178.
    Gaillardin C, Duchateau-Nguyen G, Tekaia F, Llorente B, Casaregola S, Toffano-Nioche C, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, de Montigny J, Dujon B, Durrens P, Lepingle A, Malpertuy A, Neuveglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Termier M, Wesolowski-Louvel M, Wincker P, Souciet J, Weissenbach J. Genomic exploration of the hemiascomycetous yeasts: 21. Comparative functional classification of genes. FEBS Lett. 2000;487:134–49. doi:S0014579300022924 [pii].Google Scholar
  179. 179.
    Rosenthal LP, Bodley JW. Purification and characterization of Saccharomyces cerevisiae mitochondrial elongation factor Tu. J Biol Chem. 1987;262:10955–9.PubMedGoogle Scholar
  180. 180.
    Chiron S, Suleau A, Bonnefoy N. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast. Genetics. 2005;169:1891–901. doi: 10.1534/genetics.104.037473.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Atkinson GC, Baldauf SL. Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms. Mol Biol Evol. 2011;28:1281–92. doi: 10.1093/molbev/msq316.CrossRefPubMedGoogle Scholar
  182. 182.
    Suematsu T, Watanabe O, Kita K, Yokobori S, Watanabe Y. Arabidopsis thaliana mitochondrial EF-G1 functions in two different translation steps. J Biochem. 2013;155:107–14. doi: 10.1093/jb/mvt105.CrossRefPubMedGoogle Scholar
  183. 183.
    Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell. 2009;35:502–10.CrossRefPubMedGoogle Scholar
  184. 184.
    Gupta A, Mir SS, Jackson KE, Lim EE, Shah P, Sinha A, Siddiqi MI, Ralph SA, Habib S. Recycling factors for ribosome disassembly in the apicoplast and mitochondrion of Plasmodium falciparum. Mol Microbiol. 2013;88:891–905. doi: 10.1111/mmi.12230.CrossRefPubMedGoogle Scholar
  185. 185.
    Johnson RA, McFadden GI, Goodman CD. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid. PLoS One. 2011;6:e20633. doi: 10.1371/journal.pone.0020633.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Scolnick E, Tompkins R, Caskey T, Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci USA. 1968;61:768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Klaholz BP. Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sci. 2011;36:282–92.CrossRefPubMedGoogle Scholar
  188. 188.
    Duarte I, Nabuurs SB, Magno R, Huynen M. Evolution and diversification of the organellar release factor family. Mol Biol Evol. 2012;29:3497–512. doi: 10.1093/molbev/mss157.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N. HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG. Genes Cells. 2008;13:429–38. doi: 10.1111/j.1365-2443.2008.01181.x.CrossRefPubMedGoogle Scholar
  190. 190.
    Soleimanpour-Lichaei HR, Kuhl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol Cell. 2007;27:745–57. doi: 10.1016/j.molcel.2007.06.031.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP. Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria. RNA. 2010;16:1146–55.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Akabane S, Ueda T, Nierhaus KH, Takeuchi N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet. 2014;10:e1004616. doi: 10.1371/journal.pgen.1004616.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Lind C, Sund J, Aqvist J. Codonreading specificities of mitochondrial release factors and translation termination at non-standard stop codons. Nat Commun. 2013;4:2940. doi: 10.1038/ncomms3940.CrossRefPubMedGoogle Scholar
  194. 194.
    Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 2010;29:1116–25. doi: 10.1038/emboj.2010.14.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structur-al basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science. 2012;335:1370–2. doi: 10.1126/science.1217443.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 2010;39:1739–48. doi: 10.1093/nar/gkq1097.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Antonicka H, Ostergaard E, Sasarman F, Weraarpachai W, Wibrand F, Pedersen AM, Rodenburg RJ, van der Knaap MS, Smeitink JA, Chrzanowska-Lightowlers ZM, Shoubridge EA. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet. 2011;87:115–22.CrossRefGoogle Scholar
  198. 198.
    Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kuhl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res. 2008;36:5787–99. doi: 10.1093/nar/gkn576.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Christian BE, Spremulli LL. Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry. 2009;48:3269–78. doi: 10.1021/bi8023493.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Barrientos A, Zambrano A, Tzagoloff A. Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. Embo J. 2004;23:3472–82.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Perez-Martinez X, Broadley SA, Fox TD. Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. Embo J. 2003;22:5951–61.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Khalimonchuk O, Bird A, Winge DR. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J Biol Chem. 2007;282:17442–9.CrossRefPubMedGoogle Scholar
  203. 203.
    Rak M, Su CH, Xu JT, Azpiroz R, Singh AM, Tzagoloff A. Regulation of mitochondrial translation of the ATP8/ATP6 mRNA by Smt1p. Mol Biol Cell. 2016.Google Scholar
  204. 204.
    Rak M, Tzagoloff A. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. Proc Natl Acad Sci USA. 2009;106:18509–14.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Godard F, Tetaud E, Duvezin-Caubet S, di Rago JP. A genetic screen targeted on the FO component of mitochondrial ATP synthase in Saccharomyces cerevisiae. J Biol Chem. 2011;286:18181–9.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Rak M, Gokova S, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase. Embo J. 2011;30:920–30.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Gruschke S, Kehrein K, Rompler K, Grone K, Israel L, Imhof A, Herrmann JM, Ott M. Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J Cell Biol. 2011;193:1101–14.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Mick DU, Fox TD, Rehling P. Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol. 2011;12:14–20.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128:833–7.CrossRefPubMedGoogle Scholar
  210. 210.
    Rodel G. Translational activator proteins required for cytochrome b synthesis in Saccharomyces cerevisiae. Curr Genet. 1997;31:375–9.CrossRefPubMedGoogle Scholar
  211. 211.
    Manthey GM, McEwen JE. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. Embo J. 1995;14:4031–43.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Mulero JJ, Fox TD. PET111 acts in the 5’-leader of the Saccha-romyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics. 1993;133:509–16.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Costanzo MC, Fox TD. Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA. Mol Cell Biol. 1986;6:3694–703.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Costanzo MC, Seaver EC, Fox TD. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. Embo J. 1986;5:3637–41.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Costanzo MC, Fox TD. Specific translational activation by nuclear gene products occurs in the 5’ untranslated leader of a yeast mitochondrial mRNA. Proc Nat Acad Sci USA. 1988;85:2677–81.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Finnegan PM, Payne MJ, Keramidaris E, Lukins HB. Characterization of a yeast nuclear gene, AEP2, required for accumulation of mitochondrial mRNA encoding subunit 9 of the ATP synthase. Curr Genet. 1991;20:53–61.CrossRefPubMedGoogle Scholar
  217. 217.
    Payne MJ, Finnegan PM, Smooker PM, Lukins HB. Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae. Curr Genet. 1993;24:126–35.CrossRefPubMedGoogle Scholar
  218. 218.
    Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT. Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta. 2012;1817:851–62.CrossRefPubMedGoogle Scholar
  219. 219.
    Wanschers BF, Szklarczyk R, van den Brand MA, Jonckheere A, Suijskens J, Smeets R, Rodenburg RJ, Stephan K, Helland IB, Elkamil A, Rootwelt T, Ott M, van den Heuvel L, Nijtmans LG, Huynen MA. A mutation in the human CBP4 ortholog UQCC3 im-pairs complex III assembly, activity and cytochrome b stability. Hum Mol Genet. 2014;23:6356–65.CrossRefPubMedGoogle Scholar
  220. 220.
    Duarte FV, Palmeira CM, Rolo AP. The role of microRNAs in mitochondria: small players acting wide. Genes (Basel). 2014;5:865–86.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA. 2011;17:2085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Richter-Dennerlein R, Dennerlein S, Rehling P. Integrating mitochondrial translation into the cellular context. Nat Rev Mol Cell Biol. 2015;16:586–92.CrossRefPubMedGoogle Scholar
  223. 223.
    Lang BF, Jakubkova M, Hegedusova E, Daoud R, Forget L, Brejova B, Vinar T, Kosa P, Fricova D, Nebohacova M, Griac P, Tomaska L, Burger G, Nosek J. Massive programmed translational jumping in mitochondria. Proc Natl Acad Sci USA. 2014;111:5926–31.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Nosek J, Tomaska L, Burger G, Lang BF. Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends Genet. 2015;31:187–94.CrossRefPubMedGoogle Scholar
  225. 225.
    Watanabe Y, Tsurui H, Ueda T, Furushima R, Takamiya S, Kita K, Nishikawa K, Watanabe K. Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J Biol Chem. 1994;269:22902–6.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aldo E. García-Guerrero
    • 1
  • Angélica Zamudio-Ochoa
    • 1
  • Yolanda Camacho-Villasana
    • 1
  • Rodolfo García-Villegas
    • 1
  • Adrián Reyes-Prieto
    • 2
  • Xochitl Pérez-Martínez
    • 1
    Email author
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Department of BiologyUniversity of New BrunswickFrederictonCanada

Personalised recommendations