Bijectivity Certification of 3D Digitized Rotations

  • Kacper Pluta
  • Pascal Romon
  • Yukiko Kenmochi
  • Nicolas Passat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

Euclidean rotations in \(\mathbb {R}^n\) are bijective and isometric maps. Nevertheless, they lose these properties when digitized in \(\mathbb {Z}^n\). For \(n=2\), the subset of bijective digitized rotations has been described explicitly by Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In the case of 3D digitized rotations, the same characterization has remained an open problem. In this article, we propose an algorithm for certifying the bijectivity of 3D digitized rational rotations using the arithmetic properties of the Lipschitz quaternions.

Notes

Acknowledgments

The authors express their thanks to Éric Andres of Université de Poitiers for his very helpful feedback and comments which allowed us to improve the article.

The research leading to these results has received funding from the Programme d’Investissements d’Avenir (LabEx Bézout, ANR-10-LABX-58).

References

  1. 1.
    Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Conway, J., Smith, D.: On Quaternions and Octonions. Taylor & Francis, Ak Peters Series, Boca Raton (2003)MATHGoogle Scholar
  3. 3.
    Cremona, J.: Letter to the editor. American Mathematical Monthly 94(8), 757–758 (1987)MathSciNetGoogle Scholar
  4. 4.
    Hardy, G.H., Wright, E.M.: Introduction to the Theory of Numbers, vol. IV. Oxford University Press, Cambridge (1979)MATHGoogle Scholar
  5. 5.
    Jacob, M.A., Andres, E.: On discrete rotations. In: DGCI. pp. 161–174 (1995)Google Scholar
  6. 6.
    Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics. CRC Press, Boca Raton (2015)CrossRefMATHGoogle Scholar
  7. 7.
    Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite Normal Form. In: ISSAC. pp. 231–236. ACM (2001)Google Scholar
  8. 8.
    Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)MATHGoogle Scholar
  9. 9.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)CrossRefMATHGoogle Scholar
  10. 10.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Pernet, C., Stein, W.: Fast computation of Hermite normal forms of random integer matrices. J. Number Theory 130(7), 1675–1683 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the 2D Cartesian grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 359–371. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32360-2_28 CrossRefGoogle Scholar
  17. 17.
    Roussillon, T., Cœurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Research report, LIRIS UMR CNRS 5205 (2016). https://hal.archives-ouvertes.fr/hal-01259826
  18. 18.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)MATHGoogle Scholar
  19. 19.
    Vince, J.: Quaternions for Computer Graphics. Springer, London (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kacper Pluta
    • 1
    • 2
  • Pascal Romon
    • 2
  • Yukiko Kenmochi
    • 1
  • Nicolas Passat
    • 3
  1. 1.Université Paris-Est, LIGM, CNRS, ESIEEParisFrance
  2. 2.Université Paris-Est, LAMA, UPEMParisFrance
  3. 3.Université de Reims Champagne-Ardenne, CReSTICReimsFrance

Personalised recommendations