Advertisement

Computation of Cubical Steenrod Squares

  • Marek Krčál
  • Paweł Pilarczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in Open image in new window . Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83–93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253–275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/].

We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290–320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach.

One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map \(A\rightarrow S^d\) to a sphere \(S^d\) be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function Open image in new window and a value \(r>0\) whether every Open image in new window with \(\Vert g-f\Vert _\infty \le r\) has a root, reduces to the extension problem.

Keywords

Cohomology operation Cubical complex Cup product Chain contraction 

Notes

Acknowledgements

The research conducted by both authors has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreements no. 291734 (for M. K.) and no. 622033 (for P. P.).

References

  1. 1.
    Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. Siam J. Comput. 43(5), 1728–1780 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Computational Homology Project software. http://chomp.rutgers.edu/software/
  3. 3.
    Computer Assisted Proofs in Dynamics group. http://capd.ii.uj.edu.pl/
  4. 4.
    Eilenberg, S., Mac Lane, S.: On the groups \(H(\Pi, n)\), I. Ann. Math. 58, 55–106 (1953)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Franek, P., Krčál, M.: obust satisfiability of systems ofequations. J. ACM 62(4), 26:1–26:19 (2015). http://doi.acm.org/10.1145/2751524 CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Díaz, R., Medrano, B., Sánchez-Peláez, J., Real, P.: Simplicial perturbation techniques and effective homology. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 166–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    González-Díaz, R., Real, P.: A combinatorial method for computing Steenrod squares. J. Pure Appl. Algebra 139(1–3), 89–108 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    González-Díaz, R., Real, P.: Computation of cohomology operations on finite simplicial complexes. Homology Homotopy Appl. 5(2), 83–93 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    González-Díaz, R., Real, P.: HPT and cocyclic operations. Homology Homotopy Appl. 7(2), 95–108 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001). http://www.math.cornell.edu/ hatcher/AT/ATpage.html MATHGoogle Scholar
  11. 11.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology, Applied Mathematical Sciences, vol. 157. Springer-Verlag, New York (2004)MATHGoogle Scholar
  12. 12.
    Kaczynski, T., Mrozek, M.: The cubical cohomology ring: An algorithmic approach. Found. Comput. Math. 13(5), 789–818 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kühnel, W., Banchoff, T.F.: The 9-vertex complex projective plane. Math. Intelligencer 5(3), 11–22 (1983)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mischaikow, K., Mrozek, M., Pilarczyk, P.: Graph approach to the computation of the homology of continuous maps. Found. Comput. Math. 5, 199–229 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Franek, P., Krčál, M., Wagner, H.: Robustness of zero sets: Implementation, submittedGoogle Scholar
  16. 16.
    Pilarczyk, P.: The ChainCon software. Chain contractions,homology and cohomology software and examples. http://www.pawelpilarczyk.com/chaincon/
  17. 17.
    Pilarczyk, P., Real, P.: Computation of cubical homology, cohomology, and (co)homological operations via chain contraction. Adv. Comput. Math. 41(1), 253–275 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Prasolov, V.V.: Elements of Homology Theory. Graduate Studies in Mathematics, American Mathematical Society (2007)Google Scholar
  19. 19.
    Real, P.: On the computability of the Steenrod squares. Ann. Univ. Ferrara, Nuova Ser., Sez. VII, Sc. Mat. 42, 57–63 (1996)MathSciNetMATHGoogle Scholar
  20. 20.
    Sergeraert, F.: Effective homology, a survey (1992). http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
  21. 21.
    Sergeraert, F.: The computability problem in algebraic topology. Adv. Math. 104(1), 1–29 (1994)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Serre, J.P.: Homologie singulière des espaces fibrés. Ann. Math. 54(3), 425–505 (1951)CrossRefMATHGoogle Scholar
  23. 23.
    Steenrod, N.E.: Products of cocycles and extensions of mappings. Ann. Math. 48(2), 290–320 (1947)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Steenrod, N.E.: Cohomology operations, and obstructions to extending continuous functions. Adv. Math. 8, 371–416 (1972)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vokřínek, L.: Decidability of the extension problem for maps into odd-dimensional spheres. [math.AT] (2014). arXiv:1401.3758

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations