Advertisement

Considering Social Distance as an Influence Factor in the Process of Process Modeling

  • Michael ZimochEmail author
  • Jens Kolb
  • Manfred Reichert
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)

Abstract

Enterprise repositories comprise numerous business process models either created by in-house domain experts or external business analysts. To enable a widespread use of these process models, high model quality (e.g., soundness) as well as a sufficient level of granularity are crucial. Moreover, they shall reflect the actual business processes properly. Existing modeling guidelines target at creating correct and sound process models, whereas there is only little work dealing with cognitive issues influencing model creation by process designers. This paper addresses this gap and presents a controlled experiment investigating the construal level theory in the context of process modeling. In particular, we investigate the influence the social distance of a process designer to the modeled domain has on the creation of process models. For this purpose, we adopt and apply a gamification approach, which enables us to show significant differences between low and high social distance with respect to the quality, granularity, and structure of the created process models. The results obtained give insights into how enterprises shall compose teams for creating and evolving process models.

Keywords

Virtual World Social Distance Semantic Quality Business Process Model Psychological Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Comput. Ind. 62(5), 467–486 (2011)CrossRefGoogle Scholar
  2. 2.
    Mendling, J.: Metrics for Process Models: Empirical Foundations of Verifiation, Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. In: Systems, Man and Cybernetics, Part A: Systems and Humans. pp. 1–14 (2011)Google Scholar
  4. 4.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276 (2005)CrossRefGoogle Scholar
  5. 5.
    Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Mendling, J., Strembeck, M.: Influence factors of understanding business process models. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 142–153. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process modeling. In: Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  9. 9.
    BPM Research Cluster: Cheetah Experimental Platform (2016). http://bpm.q-e.at/?page_id=56
  10. 10.
    Figl, K., Weber, B.: Individual creativity in designing business processes. In: Bajec, M., Eder, J. (eds.) CAiSE Workshops 2012. LNBIP, vol. 112, pp. 294–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Figl, K., Laue, R.: Cognitive complexity in business process modeling. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 452–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Trope, Y., Liberman, N., Wakslak, C.: Construal levels and psychological distance: effects on representation, prediction, evaluation, and behavior. J. Consum. Psychol. 17, 83–95 (2007)CrossRefGoogle Scholar
  13. 13.
    Todorov, A., Goren, A., Trope, Y.: Probability as a psychological distance: construal and preferences. J. Exp. Soc. Psychol. 43, 473–482 (2007)CrossRefGoogle Scholar
  14. 14.
    Trope, Y., Liberman, N.: Construal-level theory of psychological distance. Psychol. Rev. 117, 440–463 (2010)CrossRefGoogle Scholar
  15. 15.
    Day, S., Bartels, D.: Representation over time: the effects of temporal distance on similarity. Cognition 106, 1504–1513 (2008)CrossRefGoogle Scholar
  16. 16.
    Liberman, N., Sagristano, M.D., Trope, Y.: The effect of temporal distance on level of mental construal. J. Exp. Soc. Psychol. 38, 523–534 (2002)CrossRefGoogle Scholar
  17. 17.
    Fujita, K., Henderson, M.D., Eng, J., Trope, Y., Liberman, N.: Spatial distance and mental construal of social events. Psychol. Sci. 17, 278–282 (2006)CrossRefGoogle Scholar
  18. 18.
    Pronin, E., Olivola, C.Y., Kennedy, K.A.: Doing unto future selves as you would do unto others: psychological distance and decision making. Pers. Soc. Psychol. Bull. 34, 224–236 (2008)CrossRefGoogle Scholar
  19. 19.
    Kolb, J., Zimoch, M., Weber, B., Reichert, M.: How social distance of process designers affects the process of process modeling: insights from a controlled experiment. In: Proceedings of the SAC 2014. pp. 1364–1370 (2014)Google Scholar
  20. 20.
    Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “gamification". In: MindTrek 2015. pp. 9–15 (2011)Google Scholar
  21. 21.
    Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game Mechanics in Web and Mobile Apps. O’Reilly, Sebastopol (2011)Google Scholar
  22. 22.
    Bartle, R.A.: Designing Virtual Worlds. New Riders, Berkeley (2004)Google Scholar
  23. 23.
    Davis, A., Khazanchi, D., Murphy, J., Zigurs, I., Owens, D.: Avatars, people, and virtual worlds: foundations for research in metaverses. J. Assoc. Inf. Syst. 10, 90–117 (2009)Google Scholar
  24. 24.
    Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. Softw. Eng. 35(6), 756–779 (2008)CrossRefGoogle Scholar
  25. 25.
    Krogstie, J.: Model-Based Development and Evolution of Information Systems. Springer, London (2012)CrossRefGoogle Scholar
  26. 26.
    Holschke, O., Rake, J., Levina, O.: Granularity as a cognitive factor in the effectiveness of business process model reuse. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 245–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Polyvyanyy, A., Smirnov, S., Weske, M.: On application of structural decomposition for process model abstraction. In: Proceedings of the BPSC 2009. pp. 110–122 (2009)Google Scholar
  28. 28.
    Moody, D.L.: Cognitive load effects on end user understanding of conceptual models: an experimental analysis. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Wolf, C., Harmon, P.: The state of business process management 2012. In: BPTrends Report (2012)Google Scholar
  30. 30.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38, 33–44 (1995)CrossRefGoogle Scholar
  31. 31.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. IEEE Softw. 11(2), 42–49 (1994)CrossRefGoogle Scholar
  32. 32.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a revised quality framework. J. Inf. Syst. 15, 91–102 (2006)CrossRefGoogle Scholar
  33. 33.
    Recker, J., Safrudin, N., Rosemann, M.: How novices model business processes. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 29–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Rittgen, P.: Quality and Perceived Usefulness of Process Models. In: Proceedings of the 24th Symposium on Applied Computing (SAC 2010). pp. 65–72 (2010)Google Scholar
  35. 35.
    Mendling, J., Neumann, G.: Error Metrics for Business Process Models. In: Proceedings of the CAISE 2007. pp. 53–56 (2007)Google Scholar
  36. 36.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer, Norwell (2000)CrossRefGoogle Scholar
  37. 37.
    Höst, M., Regnell, B., Wohlin, C.: Using students as subjects a comparative study of students and professionals in lead-time impact assessment. Empirical Softw. Eng. 5, 201–214 (2000)CrossRefGoogle Scholar
  38. 38.
    Svahnberg, M., Aurum, A., Wohlin, C.: Using students as subjects - an empirical evaluation. In: ESEM 2008, ACM. pp. 288–290 (2008)Google Scholar
  39. 39.
    Kline, P.: Handbook of Psychological Testing, vol. 2. Routledge, New York (1999)Google Scholar
  40. 40.
    Sirkin, M.: Statistics for the Social Sciences, vol. 3. Sage, Thousand Oaks (2005)Google Scholar
  41. 41.
    Tversky, A., Kahnemann, D.: Availability: a heuristic for judging frequency and probability. Cogn. Psychol. 5, 207–232 (1973)CrossRefGoogle Scholar
  42. 42.
    Kyung, E.J., Menon, G., Trope, Y.: Construal level and temporal judgments of the past: the moderating role of knowledge. Psychon. Bull. Rev. 21, 734–739 (2014)CrossRefGoogle Scholar
  43. 43.
    Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.: Detection and prediction of errors in EPCs of the SAP reference model. Data Knowl. Eng. 64(1), 312–329 (2008)CrossRefGoogle Scholar
  44. 44.
    Aguilar, E.R., Sanchez, L., Carballeira, F.G., Ruiz, F., Piattini, M., Caivano, D., Visaggio, G.: Prediction models for BPMN usability and maintainability. In: Proceedings of the CEC 2009. pp. 383–390 (2009)Google Scholar
  45. 45.
    Pinggera, J., Soffer, P., Fahland, D., Weidlich, M., Zugal, S., Weber, B., Reijers, H., Mendling, J.: Styles in business process modeling: an exploration and a model. Soft Syst. Model. 14, 1055–1080 (2013)CrossRefGoogle Scholar
  46. 46.
    Aparicio, A.F., Vela, F.L.G., Sánchez, J.L.G., Montes, J.L.I.: Analysis and application of gamification. In: New Trends in Interaction, Virtual Reality and Modeling, Human-Computer Interaction Series. pp. 113–126 (2013)Google Scholar
  47. 47.
    Santorum, M., Front, A., Rieu, D.: ISEAsy: a social business process management platform. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 125–137. Springer, Switzerland (2014)CrossRefGoogle Scholar
  48. 48.
    Brito, T.P., Paes, J., Moura, A.B.: Game-based learning in IT service transition. In: Proceedings of the CSEDU 2014. pp. 110–116 (2014)Google Scholar
  49. 49.
    Brown, R.A.: Conceptual modelling in 3D virtual worlds for process communication. In: Proceedings of the APCCM 2010. pp. 25–32 (2010)Google Scholar
  50. 50.
    West, S., Brown, R.A., Recker, J.C.: Collaborative Business Process Modeling Using 3D Virtual Environments. In: Proceedings of the APCCM. pp. 51–60 (2010)Google Scholar
  51. 51.
    Kathleen, N., Brown, R.A., Kriglstein, S.: Storyboard augmentation of process model grammars for stakeholder communication. In: Proceedings of the IVAPP 2014. pp. 114–121 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Databases and Information SystemsUlm UniversityUlmGermany

Personalised recommendations