How Cognitively Effective is a Visual Notation? On the Inherent Difficulty of Operationalizing the Physics of Notations

  • Dirk van der Linden
  • Anna Zamansky
  • Irit Hadar
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)


The Physics of Notations [9] (PoN) is a design theory presenting nine principles that can be used to evaluate and improve the cognitive effectiveness of a visual notation. The PoN has been used to analyze existing standard visual notations (such as BPMN, UML, etc.), and is commonly used for evaluating newly introduced visual notations and their extensions. However, due to the rather vague and abstract formulation of the PoN’s principles, they have received different interpretations in their operationalization. To address this problem, there have been attempts to formalize the principles, however only a very limited number of principles was covered. This research-in-progress paper aims to better understand the difficulties inherent in operationalizing the PoN, and better separate aspects of PoN, which can potentially be formulated in mathematical terms from those grounded in user-specific considerations.


Visual notations Cognitive effectiveness Physics of Notations Operationalization 


  1. 1.
    Giraldo, F.D., España, S., Pineda, M.A., Giraldo, W.J., Pastor, O.: Conciliating model-driven engineering with technical debt using a quality framework. In: Nurcan, S., Pimenidis, E. (eds.) CAiSE Forum 2014. LNBIP, vol. 204, pp. 199–214. Springer, Switzerland (2015)CrossRefGoogle Scholar
  2. 2.
    Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the cognitive effectiveness of the webml visual notation. Softw. Syst. Model., 1–33 (2013)Google Scholar
  3. 3.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a cognitive dimensions framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)CrossRefGoogle Scholar
  4. 4.
    Gregor, S.: The nature of theory in information systems. MIS Q. 30, 611–642 (2006)Google Scholar
  5. 5.
    Gulden, J., Reijers, H.A.: Toward advanced visualization techniques for conceptual modeling. In: Proceedings of the CAiSE Forum 2015 Stockholm, Sweden, 8–12 June, 2015Google Scholar
  6. 6.
    Halpin, T.: ORM 2. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 676–687. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a revised quality framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006)CrossRefGoogle Scholar
  8. 8.
    Moody, D., van Hillegersberg, J.: Evaluating the visual syntax of UML: an analysis of the cognitive effectiveness of the UML family of diagrams. In: Gašević, D., Lämmel, R., Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Moody, D.L.: The physics of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  10. 10.
    Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the cognitive effectiveness of the i* visual notation. Requirements Eng. 15(2), 141–175 (2010)CrossRefGoogle Scholar
  11. 11.
    zur Muehlen, M., Recker, J.: How much bpmn do you need (2008).
  12. 12.
    Narayanan, N.H., Hübscher, R.: Visual language theory: towards a human-computer interaction perspective. In: Marriott, K., Meyer, B. (eds.) Visual Language Theory, pp. 87–128. Springer, New York (1998)CrossRefGoogle Scholar
  13. 13.
    (OMG), O.M.G.: Business process model and notation (BPMN) version 2.0. Technical report, January 2011.
  14. 14.
    Plataniotis, G., de Kinderen, S., Proper, H.A.: Ea anamnesis: an approach for decision making analysis in enterprise architecture. Int. J. Inf. Syst. Model. Des. (IJISMD) 5(3), 75–95 (2014). CrossRefGoogle Scholar
  15. 15.
    Schuette, R., Rotthowe, T.: The guidelines of modeling - an approach to enhance the quality in information models. In: Ling, T.-W., Ram, S., Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Störrle, H., Fish, A.: Towards an operationalization of the “Physics of Notations” for the analysis of visual languages. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 104–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    van der Linden, D., Hadar, I.: Cognitive effectiveness of conceptual modeling languages: examining professional modelers. In: Proceedings of the 5th IEEE International Workshop on Empirical Requirements Engineering (EmpiRE). IEEE (2015)Google Scholar
  18. 18.
    van der Linden, D., Hadar, I.: Evaluating the evaluators - an analysis of cognitive effectiveness improvement efforts for visual notations. In: Proceedings of the 11th International Conference on Evaluation of Novel Approaches to Software Engineering. INSTICC (2016)Google Scholar
  19. 19.
    van der Linden, D., Hadar, I.: User involvement in applications of the PoN. In: Proceedings of the 4th International Workshop on Cognitive Aspects of Information Systems Engineering (COGNISE). Springer (2016)Google Scholar
  20. 20.
    Van Zee, M., Plataniotis, G., van der Linden, D., Marosin, D.: Formalizing enterprise architecture decision models using integrity constraints. In: 2014 IEEE 16th Conference on Business Informatics (CBI), vol. 1, pp. 143–150. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dirk van der Linden
    • 1
  • Anna Zamansky
    • 1
  • Irit Hadar
    • 1
  1. 1.Department of Information SystemsUniversity of HaifaHaifaIsrael

Personalised recommendations