PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN)

  • Maria das Graças da Silva TeixeiraEmail author
  • Glaice Kelly Quirino
  • Frederik Gailly
  • Ricardo de Almeida Falbo
  • Giancarlo Guizzardi
  • Monalessa Perini Barcellos
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)


Visual Modeling Languages (VMLs) are important instruments of communication between modelers and stakeholders. Thus, it is important to provide guidelines for designing VMLs. The most widespread approach for analyzing and designing concrete syntaxes for VMLs is the so-called Physics of Notation (PoN). PoN has been successfully applied in the analysis of several VMLs. However, despite its popularity, the application of PoN principles for designing VMLs has been limited. This paper presents a systematic approach for applying PoN in the design of the concrete syntax of VMLs. We propose here a design process establishing activities to be performed, their connection to PoN principles, as well as criteria for grouping PoN principles that guide this process. Moreover, we present a case study in which a visual notation for representing Ontology Pattern Languages is designed.


Concrete syntax Design process Visual Modeling Language Physics of Notation Ontology-Pattern Languages 



This research is funded by the Brazilian Research Funding Agency CNPq (National Council for Scientific and Technological Development) (Processes 461777/2014-2 and 206255/2014-4).


  1. 1.
    Krogstie, J., Solvberg, A.: Information Systems Engineering: Conceptual Modeling in a Quality Perspective. Draft of Book, Information Systems Groups, NTNU, Trondheim, Norway (2000)Google Scholar
  2. 2.
    Ruiz, M., Costal, D., España, S., Franch, X., Pastor, Ó.: Integrating the goal and business process perspectives in information system analysis. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 332–346. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE TSE 35(6), 1–22 (2009)Google Scholar
  4. 4.
    Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: Requirements Engineering Conference (RE), pp. 115–124. IEEE Computer Society (2013)Google Scholar
  5. 5.
    Störrle, H., Fish, A.: Towards an operationalization of the “Physics of Notations” for the analysis of visual languages. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 104–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the UCM visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 221–240. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Falbo, R.A., Barcellos, M.P., Nardi, J.C., Guizzardi, G.: Organizing ontology design patterns as ontology pattern languages. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 61–75. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Moody, D.L., Heymans, P., Matulevicius, R.: Visual syntax does matter: improving the cognitive effectiveness of the i* visual notation. Requir. Eng. 15, 141–175 (2010)CrossRefGoogle Scholar
  9. 9.
    Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, London (2014)CrossRefGoogle Scholar
  10. 10.
    Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N., Longo, A., Livieri, B.: An ontology pattern language for service modeling. In: Proceedings of the 31th Annual ACM Symposium on Applied Computing - ACM-SAC 2016 (2016)Google Scholar
  11. 11.
    Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying concepts and terminology. In: Proceedings of the 4th Workshop on Ontology and Semantic Web Patterns (2013)Google Scholar
  12. 12.
    Guizzardi, G.: Ontology-based evaluation and design of visual conceptual modeling languages. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering. Product Lines, Languages and Conceptual Models, p. 345. Springer, New York (2013)Google Scholar
  13. 13.
    Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Figl, K., Derntl, M.: The impact of perceived cognitive effectiveness on perceived usefulness of visual conceptual modeling languages. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 78–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Miske, C., Rothenberger, M.A., Peffers, K.: Towards a more cognitively effective business process notation for requirements engineering. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 360–367. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria das Graças da Silva Teixeira
    • 1
    Email author
  • Glaice Kelly Quirino
    • 1
  • Frederik Gailly
    • 2
  • Ricardo de Almeida Falbo
    • 1
  • Giancarlo Guizzardi
    • 1
  • Monalessa Perini Barcellos
    • 1
  1. 1.Ontology and Conceptual Modeling Research Group (NEMO)Federal University of Espírito SantoVitoriaBrazil
  2. 2.Faculty of Economics and Business AdministrationGhent UniversityGhentBelgium

Personalised recommendations