Connecting Databases with Process Mining: A Meta Model and Toolset

  • E. González López de MurillasEmail author
  • Hajo A. Reijers
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)


Process Mining techniques require event logs which, in many cases, are obtained from databases. Obtaining these event logs is not a trivial task and requires substantial domain knowledge. In addition, the result is a single view on the database in the form of a specific event log. If we desire to change our view, e.g. to focus on another business process, and generate another event log, it is necessary to go back to the source of data. This paper proposes a meta model to integrate both process and data perspectives, relating one to the other and allowing to generate different views from it at any moment in a highly flexible way. This approach decouples the data extraction from the application of analysis techniques, enabling its use in different contexts.


Process mining Database Data schema Meta model Event extraction 


  1. 1.
    van der Aalst, W.M.P.: Extracting event data from databases to unleash process mining. In: vom Brocke, J., Schmiedel, T. (eds.) BPM - Driving Innovation in a Digital World. Management for Professionals, pp. 105–128. Springer International Publishing, Switzerland (2015)Google Scholar
  2. 2.
    Buijs, J.: Mapping Data Sources to XES in a Generic Way. Master’s thesis, Technische Universiteit Eindhoven, The Netherlands (2010)Google Scholar
  3. 3.
    van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. EMOI-INTEROP 160, 30 (2005)Google Scholar
  4. 4.
    Herzberg, N., Meyer, A., Weske, M.: Improving business process intelligence by observing object state transitions. Data Knowl. Eng. 98, 144–164 (2015)CrossRefGoogle Scholar
  5. 5.
    Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining of SAP transactions. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    ER, M., Astuti, H.M., Wardhani, I.R.K.: Material movement analysis for warehouse business process improvement with process mining: a case study. In: Bae, J., Suriadi, S., Wen, L. (eds.) AP-BPM 2015. LNBIP, vol. 219, pp. 115–127. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Mueller-Wickop, N., Schultz, M.: ERP event log preprocessing: timestamps vs. accounting logic. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 105–119. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    zur Muhlen, M.: Evaluation of workflow management systems using meta models. In: Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences, HICSS-32 (1999)Google Scholar
  10. 10.
    González-López de Murillas, E., van der Aalst, W.M.P., Reijers, H.A.: Process mining on databases: Unearthing historical data from redo logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 367–385. Springer, Switzerland (2015)CrossRefGoogle Scholar
  11. 11.
    Rosemann, M., Zur Muehlen, M.: Evaluation of workflow management systems-a meta model approach. Aust. J. Inf. Syst. 6(1), 103–116 (1998)Google Scholar
  12. 12.
    Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: Gordian: efficient and scalable discovery of composite keys. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 691–702. VLDB Endowment (2006)Google Scholar
  13. 13.
    Štolfa, J., Kopka, M., Štolfa, S., Koběrský, O., Snášel, V.: An application of process mining to invoice verification process in SAP. In: Abraham, A., Krömer, P., Snášel, V. (eds.) Innovations in Bio-inspired Computing and Applications. AISC, vol. 237, pp. 61–74. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: On multi-column foreign key discovery. Proc. VLDB Endowment 3(1–2), 805–814 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • E. González López de Murillas
    • 1
    • 3
    Email author
  • Hajo A. Reijers
    • 1
    • 2
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Computer ScienceVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Lexmark Enterprise SoftwareNaardenThe Netherlands

Personalised recommendations