Semi-automatic Derivation of RESTful Interactions from Choreography Diagrams

  • Adriatik NikajEmail author
  • Fabian Pittke
  • Mathias Weske
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)


Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN choreography diagram is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the Web, but no systematic engineering approach to design their collaboration. In this paper, we address this gap by defining a semi-automatic method for the derivation of RESTful interactions from choreography diagrams. The method is based on natural language analysis techniques to derive interactions from the textual information in choreography diagrams. The proposed method is evaluated in terms of effectiveness and considered to be useful by REST developers.


Choreography diagram RESTful interactions Natural language analysis 


  1. 1.
    OMG: Business Process Model and Notation (BPMN), Version 2.0.
  2. 2.
    Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. PhD thesis (2000)Google Scholar
  3. 3.
    Nikaj, A., Mandal, S., Pautasso, C., Weske, M.: From choreography diagrams to RESTful interactions. In: Service Oriented Applications, WESOA 2015, co-located with ICSOC 2015. Springer (2015)Google Scholar
  4. 4.
    Pautasso, C.: BPMN for REST. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 74–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: empirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)CrossRefGoogle Scholar
  6. 6.
    Leopold, H., Eid-Sabbagh, R., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)CrossRefGoogle Scholar
  7. 7.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  8. 8.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138 (1994)Google Scholar
  9. 9.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)Google Scholar
  10. 10.
    Lin, D.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304 (1998)Google Scholar
  11. 11.
    Kolb, P.: Disco: a multilingual database of distributionally similar words. In: Proceedings of KONVENS 2008, Berlin (2008)Google Scholar
  12. 12.
    Kolb, P.: Experiments on the difference between semantic similarity and relatedness. In: Proceedings of the 17th Nordic Conference on Computational Linguistics (2009)Google Scholar
  13. 13.
    Reiter, E., Dale, R.: Building applied natural language generation systems. Nat. Lang. Eng. 3(1), 57–87 (1997)CrossRefGoogle Scholar
  14. 14.
    Denger, C., Berry, D.M., Kamsties, E.: Higher quality requirements specifications through natural language patterns. In: 2003 IEEE International Conference on Software - Science, Technology and Engineering, pp. 80–90 (2003)Google Scholar
  15. 15.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Generating natural language texts from business process models. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 64–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  17. 17.
    Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental modeling concepts. Effective Communication of IT Systems, England (2005)Google Scholar
  18. 18.
    Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.: Are RESTful APIs well-designed? detection of their linguistic (Anti)patterns. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 171–187. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48616-0_11 CrossRefGoogle Scholar
  19. 19.
    Valverde, F., Pastor, O.: Dealing with rest services in model-driven web engineering methods. In: V Jornadas Científico-Técnicas en Servicios Web y SOA, JSWEB (2009)Google Scholar
  20. 20.
    Schreier, S.: Modeling restful applications. In: Proceedings of the Second International Workshop on RESTful Design, pp. 15–21. ACM (2011)Google Scholar
  21. 21.
    Laitkorpi, M., Selonen, P.: Towards a model-driven process for designing restful web services. In: IEEE International Conference on Web Services, pp. 173–180. IEEE (2009)Google Scholar
  22. 22.
    Decker, G., Kopp, O., Leymann, F., Weske, M.: Bpel4chor: extending BPEL for modeling choreographies. In: IEEE International Conference on Web Services 2007, pp. 296–303 (2007)Google Scholar
  23. 23.
    Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution language version 2.0. OASIS Standard 11, 1–10 (2007)Google Scholar
  24. 24.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Data-Centric Systems and Applications. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adriatik Nikaj
    • 1
    Email author
  • Fabian Pittke
    • 2
  • Mathias Weske
    • 1
  • Jan Mendling
    • 2
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany
  2. 2.Institute for Information BusinessWU ViennaViennaAustria

Personalised recommendations