Enabling Self-adaptive Workflows for Cyber-physical Systems

  • Ronny Seiger
  • Steffen Huber
  • Peter Heisig
  • Uwe Assmann
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 248)

Abstract

The ongoing development of Internet of Things technologies leads to the interweaving of the virtual world of software with the physical world. However, applying workflow technologies for automating processes in these Cyber-physical Systems (CPS) poses new challenges as the real world effects of a process have to be verified to provide a consistent view of the cyber and physical world executions. In this work we present a synchronization and adaptation mechanism for processes based on the MAPE-K feedback loop for self-adaptive systems. By applying this loop, sensor and context information can be used to verify the real world effects of workflow execution and adapt the process in case of errors. The approach increases autonomy and resilience of process execution in CPS due to the self-adaptation capabilities. We present generic extensions to process meta-models and execution engines to implement the feedback loop and discuss our approach within a smart home scenario.

Keywords

Workflows for the Internet of Things Cyber-physical Systems Self-adaptive workflows Real world processes 

References

  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: a survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Andonoff, E., Bouaziz, W., Hanachi, C., Bouzguenda, L.: An agent-based model for autonomic coordination of inter-organizational business processes. Informatica 20(3), 323–342 (2009)Google Scholar
  3. 3.
    Baumgrass, A., Ciccio, C.D., Dijkman, R., Hewelt, M., Mendling, J., Meyer, A., Pourmirza, S., Weske, M., Wong, T.Y.: GET controller and UNICORN: event-driven process execution and monitoring in logistics (i) (2015)Google Scholar
  4. 4.
    Bonino, D., Corno, F.: DogOnt - ontology modeling for intelligent domotic environments. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 790–803. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Conti, M., Das, S.K., Bisdikian, C., Kumar, M., Ni, L.M., Passarella, A., Roussos, G., Trster, G., Tsudik, G., Zambonelli, F.: Looking ahead in pervasive computing: challenges and opportunities in the era of cyberphysical convergence. Pervasive Mobile Comput. 8(1), 2–21 (2012)CrossRefGoogle Scholar
  7. 7.
    Dar, K., Taherkordi, A., Baraki, H., Eliassen, F., Geihs, K.: A resource oriented integration architecture for the Internet of Things: a business process perspective. Pervasive Mobile Comput. 20, 145–159 (2015)CrossRefGoogle Scholar
  8. 8.
    Gurgen, L., Gunalp, O., Benazzouz, Y., Gallissot, M.: Self-aware cyber-physical systems and applications in smart buildings and cities. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE 2013, EDA Consortium, San Jose, CA, USA, pp. 1149–1154 (2013)Google Scholar
  9. 9.
    Herzberg, N., Meyer, A., Weske, M.: An event processing platform for business process management. In: 17th IEEE International Enterprise Distributed Object Computing Conference, pp. 107–116 (2013)Google Scholar
  10. 10.
    Huber, S., Seiger, R., Schlegel, T.: Using semantic queries to enable dynamic service invocation for processes in the Internet of Things. In: 2016 IEEE International Conference on Semantic Computing (ICSC), pp. 214–221, February 2016Google Scholar
  11. 11.
    Kephart, J., Kephart, J., Chess, D., Boutilier, C., Das, R., Kephart, J.O., Walsh, W.E.: An architectural blueprint for autonomic computing. IBM (2003)Google Scholar
  12. 12.
    Koetter, F., Kochanowski, M.: Goal-Oriented model-driven business process monitoring using ProGoalML. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 72–83. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kopetz, H.: System-of-systems complexity. arXiv preprint (2013). arXiv:1311.3629
  14. 14.
    Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering, FOSE 2007, pp. 259–268. IEEE (2007)Google Scholar
  15. 15.
    Lee, E.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369, May 2008Google Scholar
  16. 16.
    Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart spaces: perspectives and research challenges. In: Persson, A., Stirna, J. (eds.) CAiSE 2015 Workshops. LNBIP, vol. 215, pp. 298–304. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Marrella, A., Mecella, M., Sardina, S.: SmartPM: an adaptive process management system through situation calculus, indigolog, and classical planning. In: Principles of Knowledge Representation and Reasoning, pp. 1–10. AAAI Press (2014)Google Scholar
  18. 18.
    Meyer, S., Ruppen, A., Hilty, L.: The things of the Internet of Things in BPMN. In: Persson, A., Stirna, J. (eds.) CAiSE 2015 Workshops. LNBIP, vol. 215, pp. 285–297. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Meyer, S., Ruppen, A., Magerkurth, C.: Internet of Things-Aware process modeling: integrating IoT devices as business process resources. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 84–98. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Oliveira, K., Castro, J., España, S., Pastor, O.: Multi-level autonomic business process management. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 184–198. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Perrin, O., Godart, C.: A model to support collaborative work in virtual enterprises. Data Knowl. Eng. 50(1), 63–86 (2004). Advances in business process managementCrossRefGoogle Scholar
  22. 22.
    Saidani, O., Rolland, C., Nurcan, S.: Towards a generic context model for BPM. In: 2015 48th Hawaii International Conference on System Sciences (HICSS), pp. 4120–4129, January 2015Google Scholar
  23. 23.
    Seiger, R., Huber, S., Schlegel, T.: PROtEUS: an integrated system for process execution in cyber-physical systems. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 265–280. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  24. 24.
    Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling complex and flexible processes for smart cyber-physical environments. J. Comput. Sci. 10, 137–148 (2015)CrossRefGoogle Scholar
  25. 25.
    Seiger, R., Niebling, F., Schlegel, T.: A distributed execution environment enabling resilient processes for ubiquitous systems. In: 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 220–223, March 2014Google Scholar
  26. 26.
    Smirek, L., Zimmermann, G., Ziegler, D.: Towards universally usable smart homes-how can myui, urc and openhab contribute to an adaptive user interface platform. In: IARIA, Nice, France, pp. 29–38 (2014)Google Scholar
  27. 27.
    Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–Driven business process evolution. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 610–624. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11536406_46 CrossRefGoogle Scholar
  28. 28.
    Weidlich, M., Ziekow, H., Gal, A., Member, S., Mendling, J., Weske, M.: Optimising event pattern matching using business process models. IEEE Trans. Knowl. Data Eng. 26(11), 1–14 (2013)Google Scholar
  29. 29.
    Wieland, M., Schwarz, H., Breitenbucher, U., Leymann, F.: Towards situation-aware adaptive workflows: Sitopta general purpose situation-aware workflow management system. In: 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 32–37. IEEE (2015)Google Scholar
  30. 30.
    Wombacher, A.: How physical objects and business workflows can be correlated. In: Proceedings - 2011 IEEE International Conference on Services Computing, SCC 2011, pp. 226–233 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ronny Seiger
    • 1
  • Steffen Huber
    • 1
  • Peter Heisig
    • 1
  • Uwe Assmann
    • 1
  1. 1.Institute of Software and Multimedia TechnologyTechnische Universität DresdenDresdenGermany

Personalised recommendations