Advertisement

HCM-L: Domain-Specific Modeling for Active and Assisted Living

  • Heinrich C. MayrEmail author
  • Fadi Al Machot
  • Judith Michael
  • Gert Morak
  • Suneth Ranasinghe
  • Vladimir Shekhovtsov
  • Claudia Steinberger

Abstract

Modeling and modeling methods are crucial for information systems engineering but are seldom seamlessly integrated into all phases of development and operation: Practitioners challenge the benefits of modeling and complain about the confusing variety of concepts with overlapping semantics, symbols and syntactic rules of today’s standardized, “universal” modeling languages. Therefore, domain-specific modeling languages (DSMLs) are gaining increasing popularity: they are lean and convenient, support the productivity of modeling, and help to increase model quality and comprehensibility. There are, however, few approaches to embedding a DSML into a domain-specific modeling method (DSMM) that provides guidelines about how to use a given DSML and to evaluate related models. This chapter aims to make a contribution towards filling that gap by discussing, as an example and proof of concept, a domain-specific modeling method for the human cognitive modeling language HCM-L, a DSML for the domain of active and assisted living. As a modeling language without tool support has no chance to be used in practice, we are conducting that discussion on the basis of HCM-L modeler, a tool that was implemented using the metamodeling platform ADOxx and can be accessed via OMiLAB, the Open Models Laboratory for modeling method engineering. HCM-L modeler is component of an ambient assistance system for supporting elder persons in mastering their daily life activities.

Keywords

DSML design Active and assisted living (AAL) Modeling tool Activity recognition End user interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feller, W.: On the logistic law of growth and its empirical verifications in biology. Acta. Biotheor. 5(2), 51–66 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    UML 2.5 Diagrams Overview. http://www.uml-diagrams.org/uml-25-diagrams.html. Accessed 12 Mar 2016
  3. 3.
    ACTIVE AND ASSISTED LIVING PROGRAMME—ICT for ageing well. http://www.aal-europe.eu/. Accessed 12 Mar 2016
  4. 4.
    Michael, J., Mayr, H.C.: Creating a Domain Specific Modelling Method for Ambient Assistance. In: International Conference on Advances in ICT for Emerging Regions (ICTer2015). IEEE (2015)Google Scholar
  5. 5.
    International Organization for Standardization: Information Technology—Information Resource Dictionary System (IRDS) framework. ISO/IEC 10027:1990Google Scholar
  6. 6.
    Object Management Group: Meta Object Facility (MOF) Specification. www.omg.org/cgi-bin/doc/?formal/02-04-03.pdf. Accessed 12 Mar 2016
  7. 7.
    Atkinson, C., Kühne, T.: Model-driven development: a metamodelling foundation. IEEE Softw. 20(5), 36–41 (2003)CrossRefGoogle Scholar
  8. 8.
    Bézivin, J.: On the unification power of models. Softw. Syst. Model., 4(2), 171–188 (2005)Google Scholar
  9. 9.
    Frank, U.: Domain-specific modelling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 133–157. Springer (2013)Google Scholar
  10. 10.
    Frank, U.: Outline of a method for designing domain-specific modelling languages. ICB-Research Report 42. University Duisburg-Essen (2010)Google Scholar
  11. 11.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) E-Commerce and Web Technologies. LNCS, pp. 182–197. Springer (2002)Google Scholar
  12. 12.
    Tolvanen, J.-P., Kelly, S.: Defining domain-specific modelling languages to automate product derivation: collected experiences. In: Hutchison, D., et al. (eds.) Software Product Lines, pp. 198–209. Springer (2005)Google Scholar
  13. 13.
    Kofod-Petersen, A., Mikalsen, M.: Context: representation and reasoning. Spec. Issue Rev. d’Intell. Artif. “Appl. Context-Manag.” (2005)Google Scholar
  14. 14.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010)CrossRefGoogle Scholar
  15. 15.
    Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  16. 16.
    Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: IEEE 21st International Requirements Engineering Conference (RE), pp. 115–124 (2013)Google Scholar
  17. 17.
    Kaschek, R., Mayr, H.C.: A characterization of OOA tools. In: IEEE International Symposium on Assessment of Software Tools, pp. 59–67 (1996)Google Scholar
  18. 18.
    Becker, J.: Die Grundsätze ordnungsmäßiger Modelierung und ihre Einbettung in ein Vorgehensmodel zur Erstellung betrieblicher Informationsmodele. Informationssystem-Architekturen, Rundbrief des Fachausschusses 5.2 der Gesellschaft für Informatik 5(2), 56–62 (1998)Google Scholar
  19. 19.
    Steinberg, D.: EMF Eclipse Modelling Framework. The Eclipse Series. Addison-Wesley, Upper Saddle River, NJ (2009)Google Scholar
  20. 20.
    Krogstie, J., Lindland, O.I., Sindre, G.: Defining Quality Aspects for Conceptual Models. Chapman & Hall, London (1995)CrossRefGoogle Scholar
  21. 21.
    Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design. An Entity-Relationship Approach. The Benjamin/Cummings Series in Computer Science. Benjamin/Cummings, Redwood City, Calif (1991)Google Scholar
  22. 22.
    van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  23. 23.
    United Nations Population Division, World Population Prospects, the 2012 Revision, Indicator Population 60+, World, medium variant. http://esa.un.org/wpp/unpp/panel_indicators.htm. Accessed 12 Mar 2016
  24. 24.
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2013. ST/ESA/SER.A/348 (2013)Google Scholar
  25. 25.
    Michael, J.: Using Cognitive Models for Behavioural Assistance of Humans. In: it—Information Technology, de Gruyter. Accepted 2 Dec 2015Google Scholar
  26. 26.
    Cohen, P.R., Feigenbaum, E.A.: The Handbook of Artificial Intelligence. William Kaufmann, Inc. (1982)Google Scholar
  27. 27.
    Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs, N.J. (1972)Google Scholar
  28. 28.
    Schmalhofer, F.: Constructive Knowledge Acquisition: A Computational Model and Experimental Evaluation, Lawrence Erlbaum Associates (2001)Google Scholar
  29. 29.
    Ferro, E, Girolami, M., Salvi, D., Mayer, C., Gorman, J., Grguric, A., Ram, R., Sadat, R., Giannoutakis, K.M., Stocklöw, C.: The UniversAAL Platform for AAL (Ambient Assisted Living). J. Intell. Syst. (2015)Google Scholar
  30. 30.
    Kop, C., Mayr, H.C.: Conceptual predesign bridging the gap between requirements and conceptual design. In: Proceedings of the 3rd International Conference on Requirements Engineering (ICRE’98), Colorado Springs, April 1998, pp 90–100 (1998)Google Scholar
  31. 31.
    Mayr, H.C., Kop, C.: A user centered approach to requirements modelling. In: Glinz, M., Müller-Luschnat, G. (Hrsg.): Modelierung 2002—Modelierung in der Praxis—Modelierung für die Praxis, pp 75–86 (2002)Google Scholar
  32. 32.
    Mayr, H.C., Michael, J.: Control pattern based analysis of HCM-L, a language for cognitive modelling. In: International Conference on Advances in ICT for Emerging Regions (ICTer2012), pp. 169–175. IEEE (2012)Google Scholar
  33. 33.
    Leont’ev, A.N.: Activity, Consciousness, and Personality. Prentice-Hall, Englewood Cliffs, NJ (1978)Google Scholar
  34. 34.
    Michael, J., Al Machot, F.; Mayr, H.C.: ADOxx based tool support for a behaviour centered modelling approach. In: Proceedings of 8th International Conference on Pervasive Technologies Related to Assistive Environments PETRA 2015. ACM Digital Library Proceedings (2015)Google Scholar
  35. 35.
    Michael, J., Mayr, H.C.: Conceptual modelling for ambient assistance. In: Proceedings of 32nd International Conference on Conceptual Modelling—ER 2013. LNCS, vol. 8217, pp. 403–413. Springer, Berlin/Heidelberg (2013)Google Scholar
  36. 36.
  37. 37.
    Raol, J.R.: Multi-Sensor Data Fusion with MATLAB®. CRC Press (2009)Google Scholar
  38. 38.
    Krishnan, N., et al.: Recognition of hand movements using wearable accelerometers. JAISE 1(2), 143–155 (2009)MathSciNetGoogle Scholar
  39. 39.
    Shekhovtsov, V.A., Mayr, H.C., Kop, C.: Facilitating effective stakeholder communication in software development processes. In: Nurcan, S., Pimenidis, E. (eds.) Information Systems Engineering in Complex Environments. LNBIP, vol. 204, pp 116–132. Springer (2015)Google Scholar
  40. 40.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Ali, T., Dutta, P., Boruah, H.: A new combination rule for conflict problem of Dempster-Shafer evidence theory. Int. J.Energ. Inf. Commun. 3(1), 35–40 (2010)Google Scholar
  42. 42.
    Al Machot, F., Mayr, H.C., Michael, J.: Behaviour modelling and reasoning for ambient support: HCM-L modeller. In: Modern Advances in Applied Intelligence, pp. 388–397. Springer International Publishing (2014)Google Scholar
  43. 43.
    Fürber, C., Hepp, M.: Using sparql and spin for data quality management on the semantic web. In: Business Information Systems. Springer Berlin Heidelberg (2010)Google Scholar
  44. 44.
    jQuery Mobile UI: https://jquerymobile.com/, accessed December 25, 2015
  45. 45.
    https://www.aldebaran.com/en. Accessed 25 Dec 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Heinrich C. Mayr
    • 1
    Email author
  • Fadi Al Machot
    • 1
  • Judith Michael
    • 1
  • Gert Morak
    • 1
  • Suneth Ranasinghe
    • 1
  • Vladimir Shekhovtsov
    • 1
  • Claudia Steinberger
    • 1
  1. 1.Application Engineering Research GroupAlpen-Adria-University KlagenfurtKlagenfurtAustria

Personalised recommendations