Advertisement

Extending the Effective Range of Prevention Through Design by OSH Applications in Virtual Reality

  • Peter NickelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9752)

Abstract

Prevention through design (PtD) is presented as a concept for designing out risks early in design and across the life cycle. PtD is an internationally recognized initiative and it is a strategy linked to safety disciplines, to the hierarchy of controls, and to new technologies. With two research projects it has been demonstrated how to use VR as new technology for PtD modeling and simulation and as a means for improving OSH early in work systems design. Investigations of virtual reconstructions of virtual accidents supported course of events and root-cause analyses. Dynamic visualizations triggered discussions about safety and usability issues in design. Risk assessments of virtual river locks with standardized components facilitate measures for risk reduction to be fed back to machinery planning. Benefits and limitations of VR applications on PtD were discussed and suggestions for fostering endeavor of PtD were given.

Keywords

Prevention through design Virtual reality Risk assessment Accident analysis Usability Occupational safety and health 

Notes

Acknowledgements

It is a pleasant duty to acknowledge support for the VR accident study by the Sub-committee ‘Goods Handling, Storage and Logistics’ of the DGUV Expert-committee ‘Trade and Logistics’. Also acknowledged is the support for the VR study on OSH for standardised components of machinery by the German Social Accident Insurance Institution of the Federal Government and for the Railway Services (UVB). The investigations are conducted in close cooperation with the Federal Waterways and Shipping Administration (WSV). The author is very grateful to the efforts of Andy Lungfiel for developing and discussing the VR scenarios.

References

  1. 1.
    NIOSH: The state of the national initiative on prevention through design. Progress report 2014, Department of Health and Human Services, CDC, Atlanta (2014)Google Scholar
  2. 2.
    EN ISO 6385: Ergonomic Principles in the Design of Work Systems. CEN, Brussels (2004)Google Scholar
  3. 3.
    Sanders, M.S., McCormick, E.J.: Human Factors in Engineering and Design. McGraw-Hill, New York (1993)Google Scholar
  4. 4.
    EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work (with amendments 2008). Off. J. Eur. Union L 183, 1–8, 29 June 1989Google Scholar
  5. 5.
    EU Machinery Directive 2006/42/EC of the European Parliament and the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast). Off. J. Eur. Union L 157, 24–86, 09 July 2006Google Scholar
  6. 6.
    BS OHSAS 18001: Managing Safety the Systems Way. BSI, London (2007)Google Scholar
  7. 7.
    Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012)Google Scholar
  8. 8.
    EASHW: Priorities for Occupational Safety and Health Research in Europe: 2013–2020. EU Publication Office, Luxembourg (2013)Google Scholar
  9. 9.
    Münsterberg, H.: Die Grundzüge der Psychotechnik. Barth, Leipzig (1914)Google Scholar
  10. 10.
    Giese, F.: Psychotechnik. Hirt, Breslau (1928)Google Scholar
  11. 11.
    Lin, M.-L.: Practice issues in prevention through design. J. Saf. Res. 39, 157–159 (2008)CrossRefGoogle Scholar
  12. 12.
    Schulte, P.A., Rinehart, R., Okun, A., Geraci, C.L., Heidel, D.S.: National prevention through design (PtD) initiative. J. Saf. Res. 39, 115–121 (2008)CrossRefGoogle Scholar
  13. 13.
    EASHW/PEROSH: Position Paper 2. Leadership in Enabling and Industrial Technologies: Prevention through Design. EASHW, Bilbao (2015)Google Scholar
  14. 14.
    Manuele, F.A.: Prevention through design (PtD): history and future. J. Saf. Res. 39, 127–130 (2008)CrossRefGoogle Scholar
  15. 15.
    Hale, A., Kriwan, B., Kjellen, U.: Safety by design based on a workshop of the new technology and work network. Editor. Saf. Sci. 45(1–2), 3–9 (2007)CrossRefGoogle Scholar
  16. 16.
    Howard, J.: Prevention through design – introduction. J. Saf. Res. 39, 113 (2008)CrossRefGoogle Scholar
  17. 17.
    Lamba, A.: Practice. Designing out hazards in the real world. Prof. Saf. 58(1), 34–40 (2013)Google Scholar
  18. 18.
    Creaser, W.: Prevention through design (PtD). Safe design from an Australian perspective. J. Saf. Res. 39, 131–134 (2008)CrossRefGoogle Scholar
  19. 19.
    Zarges, T., Giles, B.: Prevention through design (PtD). J. Saf. Res. 39, 123–126 (2008)CrossRefGoogle Scholar
  20. 20.
    Gambatese, J.A.: Research issues in prevention trough design. J. Saf. Res. 39, 153–156 (2008)CrossRefGoogle Scholar
  21. 21.
    Gambatese, J.A.: Research. The power of collaboration. Prof. Saf. 58(1), 48–54 (2013)Google Scholar
  22. 22.
    Hale, K.S., Stanney, K.M. (eds.): Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2015)Google Scholar
  23. 23.
    Chapanis, A., van Cott, H.P.: Human engineering tests and evaluations. In: van Cott, H.P., Kinkade, R.G. (eds.) Human Engineering Guide to Equipment Design, pp. 701–728. AIR, Washington (1972)Google Scholar
  24. 24.
    Määttä, T.J.: Virtual environments in machinery safety analysis and participatory ergonomics. Hum. Factor Ergon. Man 17(5), 435–443 (2007)CrossRefGoogle Scholar
  25. 25.
    Miller, C., Nickel, P., Nocera, F., Mulder, B., Neerincx, M., Parasuraman, R., Whiteley, I.: Human-machine interface. In: Hockey, G.R.J. (ed.) THESEUS Cluster 2: Psychology and Human-Machine Systems – Report, pp. 22–38. Indigo, Strasbourg (2012)Google Scholar
  26. 26.
    Naber, B., Koppenburg, M., Nickel, P., Lungfiel, A., Huelke, M.: Effects of movement speed, movement predictability and distance in human-robot-collaboration. In: XX World Congress on Safety and Health at Work 2014 – Global Forum on Prevention, Poster Exhibition. ILO, ISSA, DGUV, Frankfurt (2014)Google Scholar
  27. 27.
    Nickel, P., Lungfiel, A., Nischalke-Fehn, G., Trabold, R.-J.: A virtual reality pilot study towards elevating work platform safety and usability in accident prevention. Saf. Sci. Monit. 17(2), 1–10 (2013)Google Scholar
  28. 28.
    Wickens, C.D., Hollands, J.G., Banbury, S., Parasuraman, R.: Engineering Psychology and Human Performance. Pearson, Upper Saddle River (2013)Google Scholar
  29. 29.
    ILO: Investigation of Occupational Accidents and Diseases. A Practical Guide for Labour Inspectors. International Labour Office, Geneva (2015)Google Scholar
  30. 30.
    Mallet, L., Unger, R.: Virtual reality in mine training. In: SME Annual Meeting and Exhibition 2007, Ch. 07–031, pp. 1–4. SME, Englewood (2007)Google Scholar
  31. 31.
    Kalwasiński, D.: Simulation of the sense of touch with the use of a simulator. Zeszyty naukowe politechniki poznańskiej – organizacja I Zarzadzanie 65, 31–42 (2015)Google Scholar
  32. 32.
    Helin, K., Evilä, T., Viitaniemi, J., Aromaa, S., Kilpeläinen, P., Rannanjärvi, L., Vähä, P., Kujala, T., Pakkanen, T., Raisamo, R., Salmenperä, P., Miettinen, J., Patel, H.: HumanICT. New Human-Centred Design Method and Virtual Environments in the Design of Vehicular Working Machine Interfaces. VTT, Tampere (2007)Google Scholar
  33. 33.
    Nickel, P., Pröger, E., Kergel, R., Lungfiel, A.: Development of a VR planning model of a river lock for risk assessment in the construction and machinery industry. In: Zachmann, G., Perret, J., Amditis, A. (eds.) Conference and Exhibition of the European Association of Virtual and Augmented Reality, pp. 7–10. The Eurographics Association, Geneva (2014)Google Scholar
  34. 34.
    Nickel, P., Lungfiel, A., Bömer, T., Koppenborg, M., Trabold, R.-J.: Wirksamkeit einer ergänzenden Schutzmaßnahme in virtueller Realität zur Unfallprävention bei Hubarbeitsbühnen. In: GfA (ed.) Gestaltung der Arbeitswelt der Zukunft, pp. 85–87. GfA-Press, Dortmund (2014)Google Scholar
  35. 35.
    Marc, J., Belkacem, N., Marsot, J.: Virtual reality: a design tool for enhanced consideration of usability ‘validation elements’. Saf. Sci. 45, 589–601 (2007)CrossRefGoogle Scholar
  36. 36.
    Stocker, K., Deuchert, A., Zepp, C.: Hubarbeitsbühnen (Sicherheit und Gesundheit). BGHM-Aktuell 4, 16–20 (2011)Google Scholar
  37. 37.
    Reason, J.: Human Error. CUP, Cambridge (1990)CrossRefGoogle Scholar
  38. 38.
    EN ISO 10075-2: Ergonomic Principles Related to Mental Workload – Part 2: Design Principles. CEN, Brussels (2000)Google Scholar
  39. 39.
    BMVI: Verkehrsinvestitionsbericht für das Berichtsjahr 2012 [Report on traffic investments for 2012]. Deutscher Bundestag, Drucksache 18/580, 18 February 2014Google Scholar
  40. 40.
    Jander, A.: Aktuelle Situation der Standardisierung von Schleusen. In: Tagungsband BAW-Kolloquium 2012 Innovation mit Tradition: Hydraulischer Entwurf und Betrieb von Wasserbauwerken, pp. 33–38, BAW, Karlsruhe (2012)Google Scholar
  41. 41.
    Ebers-Ernst, J., Maßmann, B.: Ersatz von fünf Schleusen am Dortmund-Ems-Kanal. In: Tagungsband HTG-Kongress 2015, pp. 279–288. HTG, Hamburg (2015)Google Scholar
  42. 42.
    EU Construction Directive 92/57/EEC on the implementation of minimum safety and health requirements at temporary or mobile construction sites. Off. J. Eur. Union L 245, 6–22, 28 August 1992Google Scholar
  43. 43.
    Nickel P., Pröger E., Lungfiel A., Kergel R.: Flexible, dynamic VR simulation of a future river lock facilitates prevention through design in occupational safety and health. In: IEEE VR 2015, Annual International Symposium on Virtual Reality, pp. 385–386. IEEE Digital Library (2015)Google Scholar
  44. 44.
    Nickel, P., Kergel, R., Wachholz, T., Pröger, E., Lungfiel, A.: Setting-up a virtual reality simulation for improving OSH in standardisation of river locks. In: Safety of Industrial Automated Systems, SIAS 2015, pp. 223–228. DGUV, Berlin (2015)Google Scholar
  45. 45.
    Bouchlaghem, D., Shang, H., Whyte, J., Ganah, A.: Visualisation in architecture, engineering and construction (ACE). Autom. Constr. 14(3), 287–295 (2005)CrossRefGoogle Scholar
  46. 46.
    Chun, C.K., Li, H., Skitmore, R.M.: The use of virtual prototyping for hazard identification in the early design stage. Constr. Innov. 12(1), 29–42 (2012)CrossRefGoogle Scholar
  47. 47.
    EN IEC 61160: Design Review. CEN, Brussels (2005)Google Scholar
  48. 48.
    Sacks, R., Whyte, J., Swissa, D., Raviv, G., Zhou, W., Shapira, A.: Safety by design: dialogues between designers and builders using virtual reality. Constr. Manag. Econ. 33(1), 55–72 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA)Sankt AugustinGermany

Personalised recommendations