Advertisement

Identification of Future Human-Computer System Needs in Army Aviation

  • Kathryn A. SalomonEmail author
  • David BoudreauxEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9752)

Abstract

The Army has begun to develop the next generation of rotary-wing aircraft, which will incorporate advanced automated systems. Military operations place a number of cognitive demands on pilots in addition to those seen in commercial aviation. This paper reviews the essential issues in the design of adaptive automation systems for military aircraft and discusses how adaptive automation can utilize psychophysiological feedback to enhance safety and performance.

Keywords

Military Army Aviation Adaptive automation Pilot-machine interface 

References

  1. 1.
    Wickens, C.D.: Situation awareness and workload in aviation. Curr. Dir. Psychol. Sci. 11, 128–133 (2002)CrossRefGoogle Scholar
  2. 2.
    Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review. In: Situation Awareness Analysis and Measurement. Lawrence Erlbaum Associates, Mahwah (2000)Google Scholar
  3. 3.
    Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58, 1–17 (2015)CrossRefGoogle Scholar
  4. 4.
    Jasion, G., Shrimpton, J.: Prediction of Brownout inception beneath a full-scale helicopter downwash. J. Am. Helicopter Soc. 57, 1–13 (2012)CrossRefGoogle Scholar
  5. 5.
    Allan, K., White, T., Jones, L., Merlo, J., Haas, E., Zets, G., Rupert, A.H.: Getting the buzz: what’s next for tactile information delivery? Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2010, 1331–1334 (2010)CrossRefGoogle Scholar
  6. 6.
    Whittle, R.: Army Seeks Brownout Fixes for Helo Pilots, Afghan Tests Loom (2012). http://www.breakingdefense.com/2012/03/army-seeks-brownout-fixes-for-helo-pilots-afghan-tests-loom/
  7. 7.
    Stetz, T.A., Stetz, M.C., Turner, D.D.: Mission, physical, and war stressors’ impact on aircrew psychological strain. Aviat. Space Environ. Med. 85, 568–572 (2014)CrossRefGoogle Scholar
  8. 8.
    Caldwell, J.L., Chandler, J.F., Hartzler, B.M.: Battling fatigue in aviation: recent advancements in research and practice. J. Med. Sci. 32, 47–56 (2012)Google Scholar
  9. 9.
    Rabinowitz, Y.G., Breitbach, J.E., Warner, C.H.: Managing aviator fatigue in a deployed environment: the relationship between fatigue and neurocognitive functioning. Mil. Med. 174, 358–362 (2009)CrossRefGoogle Scholar
  10. 10.
    Caldwell, J.: Work and sleep hours of U.S. Army aviation personnel working reverse cycle. Mil. Med. 166, 159–166 (2001)Google Scholar
  11. 11.
    Caldwell, J.A.: Fatigue in aviation. Travel Med. Infect. Dis. 3, 85–96 (2004)CrossRefGoogle Scholar
  12. 12.
    Drummond, S.P.A., Anderson, D.E., Straus, L.D., Vogel, E.K., Perez, V.B.: The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency. PLoS ONE 7, e35653 (2012)CrossRefGoogle Scholar
  13. 13.
    Wickens, C.D.: Processing resources in attention, dual task performance, and workload assessment. Technical report, Office of Naval Research (1980)Google Scholar
  14. 14.
    Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50, 449–455 (2008)CrossRefGoogle Scholar
  15. 15.
    Liu, D., Guarino, S.L., Roth, E., Harper, K., Vincenzi, D.: Effect of novel adaptive displays on pilot performance and workload. Int. J. Aviat. Psychol. 22, 242–265 (2012)CrossRefGoogle Scholar
  16. 16.
    Raby, M., Wickens, C.D.: Strategic workload management and decision biases in aviation. Int. J. Aviat. Psychol. 4, 211–240 (1994)CrossRefGoogle Scholar
  17. 17.
    Griffin, G.: Human error is biggest obstacle to 100 percent flight safety (2010). http://www.denverpost.com/ci_14398562
  18. 18.
    Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A., Wiegmann, D.A.: Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system. Hum. Factors 49, 227–242 (2007)CrossRefGoogle Scholar
  19. 19.
    Olson, W.A.: Identifying and mitigating the risks of cockpit automation. Air Command and Staff College Wright Flyer Paper No. 14 (2001)Google Scholar
  20. 20.
    Sarter, N.B., Woods, D.D.: Team play with a powerful and independent agent: a corpus of operational experiences and automation surprises on the airbus A-320. Hum. Factors 39, 553–569 (1997)CrossRefGoogle Scholar
  21. 21.
    Langan-Fox, J., Sankey, M.J., Canty, J.M.: Human factors measurement for future air traffic control systems. Hum. Factors 51, 595–637 (2009)CrossRefGoogle Scholar
  22. 22.
    Mouloua, M., Parasuraman, R.: Human Performance in Automated Systems: Current Research and Trends. Hillsdale (1994)Google Scholar
  23. 23.
    Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors 39, 250–253 (1997)CrossRefGoogle Scholar
  24. 24.
    Sarter, N.B., Woods, D.D.: Team play with a powerful and independent agent: a full-mission simulation study. Hum. Factors 42, 390–402 (2000)CrossRefGoogle Scholar
  25. 25.
    Boyer, M., Cummings, M.L., Spence, L.B., Solovey, E.T.: Investigating mental workload changes in a long duration supervisory control task. Interact. Comput. 27, 512–520 (2015)CrossRefGoogle Scholar
  26. 26.
    Johannesen, L., Sarter, N., Cook, R., Dekker, S., Woods, D.D.: Behind Human Error. Ashgate Publishing, Aldershot (2012)Google Scholar
  27. 27.
    Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control. Hum. Factors 49, 57–75 (2007)CrossRefGoogle Scholar
  28. 28.
    Woods, D.D., Johannesen, L.J., Cook, R.I., Sarter, N.B.: Behind human error: cognitive systems, computers and hindsight. Technical report, Crew System Ergonomic Information Analysis Center (1994)Google Scholar
  29. 29.
    Kaber, D.B., Wright, M.C., Sheik-Nainar, M.A.: Investigation of multi-modal interface features for adaptive automation of a human–robot system. Int. J. Hum.-Comput. Stud. 64, 527–540 (2006)CrossRefGoogle Scholar
  30. 30.
    Wiener, E.L.: Human factors of advanced technology (glass cockpit) transport aircraft. Technical report, NASA Ames Research Center (1989)Google Scholar
  31. 31.
    Feigh, K.M., Dorneich, M.C., Hayes, C.C.: Toward a characterization of adaptive systems: a framework for researchers and system designers. Hum. Factors 54, 1008–1024 (2012)CrossRefGoogle Scholar
  32. 32.
    Wilson, G.F., Russell, C.A.: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Hum. Factors 49, 1005–1018 (2007)CrossRefGoogle Scholar
  33. 33.
    Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue, and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)CrossRefGoogle Scholar
  34. 34.
    Shaw, T., Finomore, V., Warm, J., Matthews, G.: Effects of regular or irregular event schedules on cerebral hemovelocity during a sustained attention task. J. Clin. Exp. Neuropsychol. 34, 57–66 (2012)CrossRefGoogle Scholar
  35. 35.
    Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance. Pearson Education, Upper Saddle River (2000)Google Scholar
  36. 36.
    Stuiver, A., Brookhuis, K.A., de Waard, D., Mulder, B.: Short-term cardiovascular measures for driver support: increasing sensitivity for detecting changes in mental workload. Int. J. Psychophysiol. 92, 35–41 (2014)CrossRefGoogle Scholar
  37. 37.
    Veltman, J.A., Gaillard, A.W.K.: Physiological indices of workload in a simulated flight task. Biol. Psychol. 42, 323–342 (1996)CrossRefGoogle Scholar
  38. 38.
    Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002)CrossRefGoogle Scholar
  39. 39.
    Matthews, G., Reinerman-Jones, L.E., Barber, D.J., Abich, J.: The psychometrics of mental workload: multiple measures are sensitive but divergent. Hum. Factors 57, 125–143 (2015)CrossRefGoogle Scholar
  40. 40.
    Hankins, T.C., Wilson, G.F.: A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat. Space Environ. Med. 69, 360–367 (1998)Google Scholar
  41. 41.
    Johannes, B., Gaillard, A.W.K.: A methodology to compensate for individual differences in psychophysiological assessment. Biol. Psychol. 96, 77–85 (2014)CrossRefGoogle Scholar
  42. 42.
    Ting, C.H., Mahfouf, M., Nassef, A., Linkens, D.A., Panoutsos, G., Nickel, P., Roberts, A.C., Hockey, R.J.: Real-time adaptive automation system based on identification of operator functional state in simulated process control operations. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 40, 251–262 (2010)CrossRefGoogle Scholar
  43. 43.
    Bradley, M.M., Lang, P.J.: Emotion and motivation. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, pp. 581–607. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  44. 44.
    Tadjdeh, Y.: Future Vertical Lift Could be Shot in the Arm for Industry (2015). http://www.nationaldefensemagazine.org/archive/2015/October/Pages/FutureVerticalLiftCouldBeShotintheArmforIndustry.aspx
  45. 45.
    Lamothe, D.: How a dangerous night helicopter operation killed 11 Marines and Guardsmen (2015). https://www.washingtonpost.com/news/checkpoint/wp/2015/06/03/how-a-dangerous-night-helicopter-operation-killed-11-marines-and-guardsmen

Copyright information

© US Government (outside the US) 2016

Authors and Affiliations

  1. 1.U.S. Army Aeromedical Research LaboratoryFort RuckerUSA
  2. 2.Oak Ridge Institute for Science and EducationOak RidgeUSA

Personalised recommendations