Advertisement

As Simple as Possible and as Complex as Necessary

A Communication Kit for Geothermal Energy Projects
  • Johanna KlugeEmail author
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9752)

Abstract

The successful implementation of renewable energy projects – such as deep geothermal power plants – depends on the acceptance of the local public. Therefore an adequate communication strategy is needed. We conducted three empirical studies to get an empirical basis for a communication strategy. Based on that we created a toolkit for the communication of deep geothermal energy. It consists of several hierarchical arranged tools consisting of empirical based advices for a communication strategy. Basically, to reach acceptance communication should create knowledge, trust and transparency. Cornerstones to achieve this are information and participation.

Keywords

Information strategy Geothermal energy Communication kit Project communication Information guideline Renewable energies 

Notes

Acknowledgements

This research project (TIGER) is funded by the German Federal Ministry for Industry and Energy (BMWi, no. FKZ 0325413A). Thanks to Sylvia Kowalewski for excellent project work. The research team owes gratitude to the ministry project coordinator Sarah Wurth for her helpful support in organizational as well as research issues.

References

  1. 1.
    Cataldi, R.: Social acceptance of geothermal projects: problems and costs. In: Proceedings of the European Summer School on Geothermal Energy Applications, pp. 343–351. Oradea/RO (2001)Google Scholar
  2. 2.
    Wüstenhagen, R., Wolsink, M., Bürer, M.J.: Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35(5), 2683–2691 (2007)CrossRefGoogle Scholar
  3. 3.
    Vittes, M.E., Pollock III, P.H., Lilie, S.A.: Factors contributing to NIMBY attitudes. Waste Manag. 13(2), 125–129 (1993)CrossRefGoogle Scholar
  4. 4.
    Groothuis, P.A., Groothuis, J.D., Whitehead, J.C.: Green vs. green: measuring the compensation required to site electrical generation windmills in a viewshed. Energy Policy 36(4), 1545–1550 (2008)CrossRefGoogle Scholar
  5. 5.
    Zaunbrecher, B.S., Kowalewski, S., Ziefle, M.: The willingness to adopt technologies: a cross-sectional study on the influence of technical self-efficacy on acceptance. In: Kurosu, M. (ed.) HCI 2014, Part III. LNCS, vol. 8512, pp. 764–775. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Zaunbrecher, B., Ziefle, M.: Social acceptance and its role for planning technology infrastructure. A position paper, taking wind power plants as an example. In: 4th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2015), pp. 60–65. SCITEPRESS (Science and Technology Publications, Lda) (2015)Google Scholar
  7. 7.
    Wallquist, L., Holenstein, M.: Engaging the public on geothermal energy. In: World Geothermal Congress, pp. 19–25. Melbourne (2015)Google Scholar
  8. 8.
    Möller, A. (ed.): Akzeptanz von Technik und Infrastrukturen: Anmerkungen zu einem aktuellen gesellschaftlichen Problem. Acatech-Deutsche Akademie der Technikwissenschaften. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Reimer, E., Jakobs, E.M., Borg, A., Trevisan, B.: New ways to develop professional communication concepts. In: IEEE International Professional Communication Conference, pp. 1–7. IEEE (2015)Google Scholar
  10. 10.
    Wirtz-Bruckner, S., Jakobs, E.M., Kowalewski, S., Kluge, J., Ziefle, M.: The potential of Facebook® for communicating complex technologies using the example of deep geothermal energy. In: 2015 IEEE International Professional Communication Conference (IPCC), pp. 1–10. Heidelberg (2011)Google Scholar
  11. 11.
    Kluge, J., Kowalewski, S., Ziefle, M.: Inside the user’s mind – perception of risks and benefits of unknown technologies, exemplified by geothermal energy. In: Duffy, V.G. (ed.) DHM 2015. LNCS, vol. 9184, pp. 324–334. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Kowalewski, S., Borg, A., Kluge, J., Himmel, S., Trevisan, B., Eraßme, D., Jakobs, E.M.: Modelling the influence of human factors on the perception of renewable energies. Taking geothermics as an example. In: Advances in Human Factors, Software and System Engineering, pp. 155–162 (2014)Google Scholar
  13. 13.
    Ziefle, M., Schaar, A.: Gender differences in acceptance and attitudes towards an invasive medical stent. Electron. J. Health Inform. 6(2), 1–18 (2011)Google Scholar
  14. 14.
    Wilkowska, W., Ziefle, M.: User diversity as a challenge for the integration of medical technology into future home environments. In: Ziefle, M., Röcker, C. (eds.) Human-Centred Design of eHealth Technologies Concepts Methods and Applications, pp. 95–126. IGI Global, Hershey (2011)CrossRefGoogle Scholar
  15. 15.
    Ziefle, M., Schaar, A.K.: Technical expertise and its influence on the acceptance of future medical technologies: what is influencing what to which extent? In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 513–529. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Busch, T.: Gender differences in self efficacy and attitudes toward computers. J. Educ. Comput. Res. 12, 147–158 (1995)CrossRefGoogle Scholar
  17. 17.
    Arning, K., Ziefle, M.: Different perspectives on technology acceptance: the role of technology type and age. In: Holzinger, A., Miesenberger, K. (eds.) USAB 2009. LNCS, vol. 5889, pp. 20–41. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Kluge, J., Ziefle, M.: Health is silver, beauty is golden? In: Marinos, L., Askoxylakis, I. (eds.) HAS 2013. LNCS, vol. 8030, pp. 110–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Dowd, A.-M., Boughen, N., Ashworth, P., Carr-Cornish, S.: Geothermal technology in Australia: investigating social acceptance. Energy Policy 39(10), 6301–6307 (2011)CrossRefGoogle Scholar
  20. 20.
    Kubota, H., Hondo, H., Hienuki, S., Kaieda, H.: Determining barriers to developing geothermal power generation in Japan: societal acceptance by stakeholders involved in hot springs. Energy Policy 61, 1079–1087 (2013)CrossRefGoogle Scholar
  21. 21.
    Brian, M.: Vertrauensbildung durch zielgerichtete Kommunikation. In: bbr – Sonderheft Geothermie 2013, pp. 72–74 (2013)Google Scholar
  22. 22.
    Reith, S., Kölbel, T., Schlagermann, P., Pellizzone, A., Allansdottir, A.: Public acceptance of geothermal electricity production. In: GEOELEC: Deliverable, vol. 44 (2013)Google Scholar
  23. 23.
    Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)CrossRefGoogle Scholar
  24. 24.
    Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement: a new type of fundamental measurement. J. Math. Psychol. 1, 1–27 (1964)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zaunbrecher, B., Arning, K., Falke, T., Ziefle, M.: No pipes in my backyard? Preferences for local district heating network design in Germany. In: Energy Research & Social Science, pp. 90–101 (2016)Google Scholar
  26. 26.
    Zaunbrecher, B., Bexten, T., Wirsum, M., Ziefle, M.: What is stored, why and how? Mental models and acceptance of electricity storage technologies. In: 10th International Renewable Energy Storage Conference (IRES 2016) (2016)Google Scholar
  27. 27.
    Zaunbrecher, B., Stieneker, M., De Doncker, R.W., Ziefle, M.: Does transmission technology influence acceptance of overhead power lines? An empirical study. In: 5th International Conference on Smart Cities and Green ICT Systems (Smartgreens 2016) (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chair of Communication Science/Human Computer Interaction CenterRWTH AachenAachenGermany

Personalised recommendations