Advertisement

“Tell Me Who You Are, and I Will Show You What You Get” - the Use of Individuals’ Identity for Information Technology Customization

  • Sonia CamachoEmail author
  • Andres Barrios
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9751)

Abstract

Individuals are constantly demanding more customization of the products they use, and companies are using different customization strategies to fulfill individuals’ demands. This study analyzes relevant literature on the relationship between technology and identity, and explores how identity theory can be used to customize a particular information system (IS). With this analysis, the study examines individuals’ willingness to adopt such a tailored IS in the face of privacy concerns and the possibility of using such IS in different contexts of their life (e.g. at work, at home). The research model proposed in this study will be validated using an experiment.

Keywords

Identity Customization Privacy 

References

  1. 1.
    Ling, R.: From Ubicomp to Ubiex (Pectations). Telematics Inf. 31(2), 173–183 (2014)CrossRefGoogle Scholar
  2. 2.
    Bauman, Z.: Liquid Modernity. Polity Press, Cambridge (2000)Google Scholar
  3. 3.
    Carter, M., Grover, V.: Me, My Self, and I(T): conceptualizing information technology identity and its implications. MIS Quart. 39(4), 931–957 (2015)Google Scholar
  4. 4.
    Stein, M.-K., Galliers, R.D., Markus, L.M.: Towards an understanding of identity and technology in the workplace. J. Inform. Technol. 28(3), 167–182 (2013)CrossRefGoogle Scholar
  5. 5.
    Walther, J.B.: Selective self-presentation in computer-mediated communication: hyper-personal dimensions of technology, language, and cognition. Comput. Hum. Behav. 23(5), 2538–2557 (2007)CrossRefGoogle Scholar
  6. 6.
    Lee, Y., Lee, J., Lee, Z.: Social influence on technology acceptance behavior: self-identity theory perspective. Data Base Adv. Inf. Syst. 37(2–3), 60–75 (2006)CrossRefGoogle Scholar
  7. 7.
    Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective. Commun. ACM 48(10), 83–90 (2005)CrossRefGoogle Scholar
  8. 8.
    Sheng, H., Nah, F.F.H., Siau, K.: An experimental study on ubiquitous commerce adoption: impact of personalization and privacy concerns. J. Assoc. Inf. Syst. 9(6), 344–376 (2008)Google Scholar
  9. 9.
    James, W.: Principles of Psychology. Holt, New York (1890)CrossRefGoogle Scholar
  10. 10.
    Mead, G.: Mind, Self and Society. University of Chicago Press, Chicago (1934)Google Scholar
  11. 11.
    Blumer, H.: Symbolic interactionism: perspective and method. Prentice Hall, Englewood Cliffs (1969)Google Scholar
  12. 12.
    Stryker, S., Burke, P.: Past, present, and future of an identity theory. Soc. Psychol. Q. 63, 284–297 (2000)CrossRefGoogle Scholar
  13. 13.
    Reed, A.: Social identity as a useful perspective for self-concept-based consumer research. Psychol. Market. 19, 235–266 (2002)CrossRefGoogle Scholar
  14. 14.
    Kaiser, S.: The Social Psychology of Clothing. Macmillan Publishing Company, New York (1990)Google Scholar
  15. 15.
    Stryker, S.: Symbolic Interactionism: A Social Structural Version. Benjamin/Cummings, Menlo Park (1980)Google Scholar
  16. 16.
    Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.L., Nelson, M.: Application of decision-tree induction techniques to personalized advertisements on internet storefronts. Int. J. Electron. Commun. 5(3), 45–62 (2001)Google Scholar
  17. 17.
    Zhong, E., Tan, B., Mo, K., Yang, Q.: User demographics prediction based on mobile data. Pervasive Mob. Comput. 9(6), 823–837 (2013)CrossRefGoogle Scholar
  18. 18.
    Wei, C.P., Easley, R.F., Shaw, M.J.: Web-based recommendation systems for personalized e-commerce shopping. In: Shaw, M.J. (ed.) E-Business Management, pp. 249–276. Springer, Los Angeles (2002)CrossRefGoogle Scholar
  19. 19.
    Wedel, M., Kamakura, W.A.: Market Segmentation. Methodological and Conceptual Foundations. Springer, Norwell (1999)Google Scholar
  20. 20.
    Kotler, P., Armstrong, G.: Principles of Marketing, 8th edn. Prentice-Hall International, Englewood Cliffs (1999)Google Scholar
  21. 21.
    Bhattacharjee, A., Berger, J., Menon, G.: When identity marketing backfires: consumer agency in identity expression. J. Consum. Res. 41(2), 294–309 (2014)CrossRefGoogle Scholar
  22. 22.
    Oyserman, D.: Identity-Based motivation: implications for action-readiness, procedural readiness, and consumer behavior. J. Consum. Psychol. 19(3), 250–260 (2009)CrossRefGoogle Scholar
  23. 23.
    Berger, J., Heath, C.: Where consumers diverge from others: identity signaling and product domains. J. Consum. Res. 34(2), 121–134 (2007)CrossRefGoogle Scholar
  24. 24.
    Escalas, J., Bettman, J.R.: Self-Construal, reference groups, and brand meaning. J. Consum. Res. 32(3), 378–389 (2005)CrossRefGoogle Scholar
  25. 25.
    Chernev, A., Hamilton, R., Gal, D.: Competing for consumer identity: limits to self-expression and the perils of lifestyle branding. J. Mark. 75(3), 66–82 (2011)CrossRefGoogle Scholar
  26. 26.
    Reed, A., Forehand, M.R., Puntoni, S., Warlop, L.: Identity-Based consumer behavior. IJRM 29(4), 310–321 (2012)Google Scholar
  27. 27.
    Swann Jr., W.B., Rentfrow, P.J., Guinn, J.S.: Self-verification: the search for coherence. In: Leary, M.R., Tangney, J.P. (eds.) Handbook of Self and Identity, pp. 367–383. Guilford, New York (2005)Google Scholar
  28. 28.
    Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)Google Scholar
  29. 29.
    Xu, H., Luo, X.R., Carroll, J.M., Rosson, M.B.: The personalization privacy paradox: an exploratory study of decision making process for location-aware marketing. Decis. Support Syst. 51(1), 42–52 (2011)CrossRefGoogle Scholar
  30. 30.
    Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet Users’ Information Privacy Concerns (IUIPC): the construct, the scale, and a causal model. Inform. Syst. Res. 15(4), 336–355 (2004)CrossRefGoogle Scholar
  31. 31.
    Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inform. Syst. Res. 17(1), 61–80 (2006)CrossRefGoogle Scholar
  32. 32.
    Korzaan, M.L., Boswell, K.T.: The influence of personality traits and information privacy concerns on behavioral intentions. J. Comput. Inform. Syst. 48(4), 15–24 (2008)Google Scholar
  33. 33.
    Udo, G.J.: Privacy and security concerns as major barriers for e-commerce: a survey study. ICS 9(4), 165–174 (2001)Google Scholar
  34. 34.
    Chellappa, R.K., Sin, R.G.: Personalization versus privacy: an empirical examination of the online consumer’s dilemma. Inf. Technol. Manage. 6(2–3), 181–202 (2005)CrossRefGoogle Scholar
  35. 35.
    Ho, S.Y.: The attraction of internet personalization to web users. Electron. Mark. 16(1), 41–50 (2006)CrossRefGoogle Scholar
  36. 36.
    Skeels, M.M., Grudin, J.: When social networks cross boundaries. In: GROUP 2009 Proceedings of the ACM 2009 International Conference on Supporting Group Work. ACM, New York (2009)Google Scholar
  37. 37.
    Duxbury, L., Smart, R.: The “Myth of Separate Worlds:” an exploration of how mobile technology has redefined work-life balance. In: Kaiser, S., Ringlstetter, M.J., Eikhof, D.R., Cunha, M.P.E. (eds.) Creating Balance?, pp. 269–284. Springer, Berlin (2011)CrossRefGoogle Scholar
  38. 38.
    Lin, C.F.: Segmenting customer brand preference: demographic or psychographic. JPBM 11(4), 249–268 (2002)Google Scholar
  39. 39.
    Callero, P.L.: Role-Identity salience. Soc. Psychol. Q. 48(3), 203–215 (1985)CrossRefGoogle Scholar
  40. 40.
    Stets, J.E., Biga, C.F.: Bringing identity theory into environmental sociology. Sociol. Theory 21(4), 398–423 (2003)CrossRefGoogle Scholar
  41. 41.
    Puntoni, S., Sweldens, S., Tavassoli, N.: Gender identity salience and perceived vulnerability to breast cancer. J. Mark. Res. 48, 413–424 (2011)CrossRefGoogle Scholar
  42. 42.
    Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: measuring individuals’ concerns about organizational practices. MIS Quart. 20(2), 167–196 (1996)CrossRefGoogle Scholar
  43. 43.
    Wang, W., Benbasat, I.: Interactive decision aids for consumer decision making in e-commerce: the influence of perceived strategy restrictiveness. MIS Quart. 33(2), 293–320 (2009)Google Scholar
  44. 44.
    Hong, S.J., Tam, K.Y.: Understanding the adoption of multipurpose information appliances: the case of mobile data services. Inform. Syst. Res. 17(2), 162–179 (2006)CrossRefGoogle Scholar
  45. 45.
    Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A.: G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 39(2), 175–191 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ManagementUniversidad de Los AndesBogotáColombia

Personalised recommendations