Cognitive Benefits of a Simple Visual Metrics Architecture

  • John KingEmail author
  • Kathy Sonderer
  • Kevin Lynch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9751)


Many organizations produce metrics dashboards that take a long time to develop, are visually inconsistent, require specialized staff and skills, and (of most concern) don’t clearly and rapidly identify actions or draw focus for further analysis. We addressed these issues, and realized unanticipated benefits as well, by creating a strong design and development architecture. Our results include: a templated set of metric visualizations, a radical decrease in cycle time, and realizing “self-service” business intelligence capabilities, empowering business users with expert domain knowledge to own and develop metrics. In this presentation, we discuss the visual architecture and design, the small set of templates, and the cognitive benefits of the visualizations now in use. The approach has garnered success at the company, program, directorate, and department levels, in large part due to the low cognitive burden for visualization understanding and development.


Cognition Visual architecture Metrics 


  1. 1.
    Lamantia, J.: Enhancing the portal experience. Enhancing Enterp. Serv.-Oriented Archit. Adv. Web Portal Technol. 245 (2012)Google Scholar
  2. 2.
    Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using Winning KPIs. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  3. 3.
    Palpanas, T., Chowdhary, P., Mihaila, G., Pinel, F.: Integrated model-driven dashboard development. Inf. Syst. Front. 9(2–3), 195–208 (2007)CrossRefGoogle Scholar
  4. 4.
    Grammel, L., Tory, M., Storey, M.A.: How information visualization novices construct visualizations. IEEE Trans. Vis. Comput. Graph. 16(6), 943–952 (2010)CrossRefGoogle Scholar
  5. 5.
    Tudoreanu, M.E.: Designing effective program visualization tools for reducing user’s cognitive effort. In: Proceedings of the 2003 ACM Symposium on Software Visualization, June 2003, pp. 105–ff. ACM (2003)Google Scholar
  6. 6.
    North, C., Shneiderman, B.: Snap-together visualization: can users construct and operate coordinated visualizations? Int. J. Hum.-Comput. Stud. 53(5), 715–739 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sharma, V.S., Jalote, P., Trivedi, K.S.: Evaluating performance attributes of layered software architecture. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 66–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Healey, C.G., Enns, J.T.: Attention and visual memory in visualization and computer graphics. IEEE Trans. Vis. Comput. Graph. 18(7), 1170–1188 (2012)CrossRefGoogle Scholar
  9. 9.
    Sonderer, K., Lynch, K.: Metrics visualization templates case study in aerospace product development. In: International Symposium on Electronic Imaging Visualization and Data Analysis Conference, 16–18 February 2016, San Francisco, California (2016)Google Scholar
  10. 10.
    Summerfield, C., Egner, T.: Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13(9), 403–409 (2009)CrossRefGoogle Scholar
  11. 11.
    Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: The value of information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 1–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)Google Scholar
  13. 13.
    Kosslyn, S.M., Thompson, W.L., Ganis, G.: The Case for Mental Imagery. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25(4), 12–16 (2006)CrossRefGoogle Scholar
  15. 15.
    Melcher, J., Seese, D.: Visualization and clustering of business process collections based on process metric values. In: 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2008, pp. 572–575 (2008)Google Scholar
  16. 16.
    Peng, W., Ward, M.O., Rundensteiner, E.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, INFOVIS 2004, pp. 89–96 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Raytheon Missile SystemsTucsonUSA

Personalised recommendations