Classification of Motor States from Brain Rhythms Using Lattice Neural Networks

  • Berenice Gudiño-MendozaEmail author
  • Humberto Sossa
  • Gildardo Sanchez-Ante
  • Javier M. Antelis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9703)


The identification of each phase in the process of movement arms from brain waves has been studied using classical classification approaches. Identify precisely each movement phase from relaxation to movement execution itself, is still an open challenging task. In the context of Brain-Computer Interfaces (BCI) this identification could accurately activate devices, giving more natural control systems. This work presents the use of a novel classification technique Lattice Neural Networks with Dendritic Processing (LNNDP), to identify motor states using electroencephalographic signals recorded from healthy subjects, performing self-paced reaching movements. To evaluate the performance of this technique 3 bi-classification scenarios were followed: (i) relax vs. intention, (ii) relax vs. execution, and (iii) intention vs. execution. The results showed that LNNDP provided an accuracy of (i) 65.26%, (ii) 69.07%, and (iii) 76.71% in each scenario respectively, which were higher than the chance level.


Lattice Neural Network Brain-Computer Interface Electroencephalogram Motor states 



The first author acknowledge the support from CONACYT through a postdoctoral fellowship. M. Antelis thanks to COECYTJAL for the partial financial support, project 3232-2015. H. Sossa would like to thank IPN-CIC under project SIP 20161126, and CONACYT under projects 155014 and 65 within the framework of call: Frontiers of Science 2015, for the economic support to carry out this research.


  1. 1.
    Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006)CrossRefGoogle Scholar
  2. 2.
    Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Brain-machine interface: Instant neural control of a movement signal. Nature 416, 141–142 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ang, K., Guan, C., Chua, K., Ang, B., Kuah, C., Wang, C.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: Annual International Conference of the IEEE 2010 on Engineering in Medicine and Biology Society (EMBC), pp. 5549–5552 (2010)Google Scholar
  4. 4.
    Broetz, D., Braun, C., Weber, C., Soekadar, S.R., Caria, A., Birbaumer, N.: Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation Neural Repair 24, 674–679 (2010)CrossRefGoogle Scholar
  5. 5.
    Daly, J., Wolpaw, J.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008)CrossRefGoogle Scholar
  6. 6.
    Dobkin, B.H.: Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579, 637–642 (2007)CrossRefGoogle Scholar
  7. 7.
    Fukuda, O., Tsuji, T., Ohtsuka, A., Kaneko, M.: EMG based human-robot interface for rehabilitation aid. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3492–3497 (1998)Google Scholar
  8. 8.
    Pfurtscheller, G., da Silva, F.H.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  9. 9.
    Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119, 2570–2578 (2008)CrossRefGoogle Scholar
  10. 10.
    Muralidharan, A., Chae, J., Taylor, D.: Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke. Front. Neurosci. 5, 1–7 (2011)CrossRefGoogle Scholar
  11. 11.
    Ibánez, J., Serrano, J., del Castillo, M., Minguez, J., Pons, J.: Predictive classification of self-paced upper-limb analytical movements with EEG. Med. Biol. Eng. Comput. 53, 1201–1210 (2015)CrossRefGoogle Scholar
  12. 12.
    Salvaris, M., Haggard, P.: Decoding intention at sensorimotor timescales. PLoS ONE 9, e85100 (2014)CrossRefGoogle Scholar
  13. 13.
    Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Neurocomput. 131, 132–142 (2014)CrossRefGoogle Scholar
  14. 14.
    Vega, R., Guevara, E., Falcon, L.E., Sanchez-Ante, G., Sossa, H.: Blood vessel segmentation in retinal images using lattice neural networks. Adv. Artif. Intell. Its Appl. 8265, 532–544 (2013)CrossRefGoogle Scholar
  15. 15.
    Ojeda, L., Vega, R., Falcon, L.E., Sanchez-Ante, G., Sossa, H., Antelis, J.M.: Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing. In: Carrasco-Ochoa, J.A., Martí-nez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 23–32. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Goutte, C., Gaussier, É.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Combrisson, E., Jerbi, K.: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Method 250, 126–136 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Berenice Gudiño-Mendoza
    • 1
    Email author
  • Humberto Sossa
    • 2
  • Gildardo Sanchez-Ante
    • 1
  • Javier M. Antelis
    • 1
  1. 1.Tecnologico de MonterreyZapopanMexico
  2. 2.Instituto Politécnico Nacional-CICMexico, D.F.Mexico

Personalised recommendations