Using N-Grams of Quantized EEG Values for Happiness Detection

  • David Pinto
  • Darnes Vilariño
  • Illiana Morales
  • Cristina Aguilar
  • Mireya Tovar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9703)

Abstract

When applying classification methods for the automatic detection of happiness in human beings using electroencephalographic signals, the major research works in literature report the employment of power spectral density as the main feature. However, the aim of this paper is to explore wheter or not the use of N-grams of quantized EEG values as new features may help to improve the classification process. N-grams is a standard method of data representation in the area of natural language processing which usually reports good results. In this type of input data make sense to employ this kind of representation because the happiness signal is made up of a sequence of values which naturally matches the N-grams paradigm. The results obtained show that this kind of representation obtains better results than others reported in literature.

Keywords

EEG N-grams Happiness detection Classification 

References

  1. 1.
    Wang, X.-W., Dan Nie, B.L.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129(1), 94–106 (2014)CrossRefGoogle Scholar
  2. 2.
    Jatupaiboon, N., Pan-ngum, S., Israsena, P.: Real-time EEG-based happiness detection system. Sci. World J. 2013, 52–61 (2013)CrossRefGoogle Scholar
  3. 3.
    Lee, Y.-Y., Hsieh, S.: Classifying different emotional states by means of EEG-basedfunctional connectivity patterns. PLoS ONE 9(4), e95415 (2014)CrossRefGoogle Scholar
  4. 4.
    Chanel, G., Kierkels, J.J., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int. J. Hum. Comput. Stud. 67(8), 607–627 (2009)CrossRefGoogle Scholar
  5. 5.
    Soleymani, M., Chanel, G., Kierkels, J.J.M., Pun, T.: Affective characterization of movie scenes based on content analysis and physiological changes. Int. J. Semant. Comput. 3(2), 235–254 (2009)CrossRefGoogle Scholar
  6. 6.
    Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Baltimore (2004)Google Scholar
  7. 7.
    Tatum, W.O.: Ellen r. grass lecture: Extraordinary EEG. Neurodiagnostic J. 54, 3–21 (2014)Google Scholar
  8. 8.
    Cahn, B.R., Polich, J.: Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132(2), 180–211 (2006)CrossRefGoogle Scholar
  9. 9.
    Millet, D.: The origins of EEG. In: Seventh Annual Meeting of the International Society for the History of the Neurosciences (ISHN), Los Angeles, California, USA Department of Neurology, UCLA Medical Center (2004)Google Scholar
  10. 10.
    Pfurtscheller, G., de Lopes, F.H.: Event-related EEG/MEG synchronization and desynchronization:basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  11. 11.
    Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Technical report, HP Labs (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David Pinto
    • 1
  • Darnes Vilariño
    • 1
  • Illiana Morales
    • 1
  • Cristina Aguilar
    • 1
  • Mireya Tovar
    • 1
  1. 1.Faculty of Computer Science Language and Knowledge Engineering LabBenemérita Universidad Autonóma de PueblaPueblaMexico

Personalised recommendations