New Algorithms for a Granular Image Recognition System

  • Krzysztof WiaderekEmail author
  • Danuta Rutkowska
  • Elisabeth Rakus-Andersson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)


The paper describes new algorithms proposed for the granular pattern recognition system that retrieves an image from a collection of color digital pictures based on the knowledge contained in the object information granule (OIG). The algorithms use the granulation approach that employs fuzzy and rough granules. The information granules present knowledge concerning attributes of the object to be recognized. Different problems are considered depending on the full or partial knowledge where attributes are “color”, “location”, “size”, “shape”.


Image recognition Information granulation Fuzzy sets Rough sets Knowledge-based system 


  1. 1.
    Akimoto, T., Ogata, T.: Experimental development of focalization mechanism in an integrated narrative generation system. J. Artif. Intell. Soft Comput. Res. 5(3), 177–188 (2015)CrossRefGoogle Scholar
  2. 2.
    Biniaz, A., Abbasi, A.: Segmentation and edge detection based on modified ant colony optimization for IRIS image processing. J. Artif. Intell. Soft Comput. Res. 3(2), 133–141 (2013)CrossRefGoogle Scholar
  3. 3.
    Bruzdzinski, T., Krzyzak, A., Fevens, T., Jelen, L.: Web-based framework or breast cancer classification. J. Artif. Intell. Soft Comput. Res. 4(2), 149–162 (2014)CrossRefGoogle Scholar
  4. 4.
    Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)CrossRefGoogle Scholar
  5. 5.
    Fortner, B., Meyer, T.E.: Number by Color. A Guide to Using Color to Understand Technical Data. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  6. 6.
    Karimi, B., Krzyzak, A.: A novel approach for automatic detection and classification of suspicious lesions in breast ultrasound images. J. Artif. Intell. Soft Comput. Res. 3(3), 265–276 (2013)Google Scholar
  7. 7.
    Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of Japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)CrossRefGoogle Scholar
  8. 8.
    Pal, S.K., Meher, S.K., Dutta, S.: Class-dependent rough-fuzzy granular space, dispersion index and classification. Pattern Recogn. 45, 2690–2707 (2012)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  10. 10.
    Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, vol. 1, pp. 106–110 (1998)Google Scholar
  11. 11.
    Pedrycz, W., Vukovich, G.: Granular computing in pattern recognition. In: Bunke, H., Kandel, A. (eds.) Neuro-Fuzzy Pattern Recognition, pp. 125–143. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  12. 12.
    Pedrycz, W., Park, B.J., Oh, S.K.: The design of granular classifiers: a study in the synergy of interval calculus and fuzzy sets in pattern recognition. Pattern Recogn. 41, 3720–3735 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: Rough sets and information granulation. In: Bilgic, T., De Baets, B., Kaynak, O. (eds.) IFSA 2003. LNCS (LNAI), vol. 2715, pp. 370–377. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Rakus-Andersson, E.: Fuzzy and Rough Techniques in Medical Diagnosis and Medication. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  15. 15.
    Rakus-Andersson, E.: Approximation and rough classification of letter-like polygon shapes. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems, pp. 455–474. Springer, Heidelberg (2013)Google Scholar
  16. 16.
    Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Salazar-Gonzales, A., Li, Y., Liu, X.: Automatic graph cut based segmentation of retinal optic disc by incorporating blood vessel compensation. J. Artif. Intell. Soft Comput. Res. 2(3), 235–245 (2012)Google Scholar
  18. 18.
    Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. Int. J. Intell. Syst. 16(1), 57–85 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tadeusiewicz, R., Ogiela, M.R.: Why automatic understanding? In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 477–491. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)Google Scholar
  21. 21.
    Wiaderek, K.: Fuzzy sets in colour image processing based on the CIE chromaticity triangle. In: Rutkowska, D., Cader, A., Przybyszewski, K. (eds.) Selected Topics in Computer Science Applications, pp. 3–26. Academic Publishing House EXIT, Warsaw (2011)Google Scholar
  22. 22.
    Wiaderek, K., Rutkowska, D.: Fuzzy granulation approach to color digital picture recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 412–425. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Color digital picture recognition based on fuzzy granulation approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 319–332. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Information granules in application to image recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS (LNAI), vol. 9119, pp. 649–659. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  27. 27.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Krzysztof Wiaderek
    • 1
    Email author
  • Danuta Rutkowska
    • 1
    • 2
  • Elisabeth Rakus-Andersson
    • 3
  1. 1.Institute of Computer and Information SciencesCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesLodzPoland
  3. 3.Department of Mathematics and Natural SciencesBlekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations