Advertisement

Color-Based Large-Scale Image Retrieval with Limited Hardware Resources

  • Michał Łagiewka
  • Rafał Scherer
  • Rafal Angryk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)

Abstract

This paper is an attempt to design a fast image retrieval system with limited hardware resources. To this end, we use two-stage color-based features, Hadoop with HDFS to ensure file system flexibility, even in the case of sprawling into cloud projects and JAVA environment to run on every operating system. Namely, we retrieve images by color histogram and then by the color coherence vector to pick the best match from the results found by the previous algorithm. We tested the system on a large set of Microsoft COCO images.

Keywords

Hadoop HDFS Content-based image retrieval Map/reduce Image color representation 

Notes

Acknowledgements

This work was supported by the Polish National Science Centre (NCN) within project number DEC-2011/01/D/ST6/06957.

References

  1. 1.
    Borthakur, D.: HDFS architecture guide. HADOOP APACHE PROJECT (2008). http://hadoop.apache.org/common/docs/current/hdfsdesign.pdf
  2. 2.
    El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)CrossRefGoogle Scholar
  3. 3.
    Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 706–714. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 729–736 (1995)CrossRefGoogle Scholar
  5. 5.
    Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lee, P.M., Hsiao, T.C.: Applying LCS to affective image classification in spatial-frequency domain. J. Artif. Intell. Soft Comput. Res. 4(2), 99–123 (2014)CrossRefGoogle Scholar
  7. 7.
    Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: Proceedings 3rd IEEE Workshop on Applications of Computer Vision, WACV 1996, pp. 96–102. IEEE (1996)Google Scholar
  9. 9.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 65–73. ACM (1997)Google Scholar
  10. 10.
    Serdah, A.M., Ashour, W.M.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016)CrossRefGoogle Scholar
  11. 11.
    Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the hsv color space for image retrieval. In: 2002 International Conference on Image Processing, Proceedings, vol. 2, p. II-589. IEEE (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michał Łagiewka
    • 1
  • Rafał Scherer
    • 1
  • Rafal Angryk
    • 2
  1. 1.Institute of Computational IntelligenceCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations