From SBVR to BPMN and DMN Models. Proposal of Translation from Rules to Process and Decision Models

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)

Abstract

The same business concepts can be expressed in various knowledge representations like processes or rules. This paper presents an interoperability solution for transforming a subset of the SBVR rules into the BPMN and DMN models. The translation algorithm describes how to translate the SBVR vocabulary, structural and operational rules into particular BPMN and DMN elements. The result is a combined process and decision model, which can be used for validating SBVR rules by people aware of BPMN and DMN notations.

References

  1. 1.
    zur Muehlen, M., Indulska, M., Kamp, G.: Business process and business rule modeling languages for compliance management: a representational analysis. In: Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling ER 2007, Darlinghurst, Australia, vol. 83, pp. 127–132. Australian Computer Society Inc., Australian (2007)Google Scholar
  2. 2.
    Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Proposal of representing BPMN diagrams with XTT2-based business rules. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 243–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    OMG: Semantics of business vocabulary and business rules (SBVR). Version 1.3: formal specification. Technical report, Object Management Group (OMG) (2015)Google Scholar
  4. 4.
    OMG: Decision model and notation (DMN). Version 1.0: formal specification. Technical report, Object Management Group (OMG) (2015)Google Scholar
  5. 5.
    OMG: Business process model and notation (BPMN) Version 2.0. Technical report, Object Management Group (OMG) (2011)Google Scholar
  6. 6.
    Kaczor, K., Nalepa, G.J.: Semantically-driven rule interoperability – concept proposal. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 511–522. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Kaczor, K.: Practical approach to interoperability in production rule bases with Subito. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 637–648. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Lévy, F., Nazarenko, A.: Formalization of natural language regulations through SBVR structured english. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 19–33. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Lindsay, A., Dawns, D., Lunn, K.: Business processes - attempts to find a definition. Inf. Softw. Technol. 45(15), 1015–1019 (2003)CrossRefGoogle Scholar
  10. 10.
    Linehan, M.H., de Sainte Marie, C.: The relationship of decision model and notation (DMN) to SBVR and BPMN. Bus. Rules J. 12(6) (2011). http://www.BRCommunity.com/a2011/b597.html
  11. 11.
    Hohwiller, J., Schlegel, D., Grieser, G., Hoekstra, Y.: Integration of BPM and BRM. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 136–141. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Pitschke, J.: Integrating business process models and business logic: BPMN and the decision model. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 148–153. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Raj, A., Prabhakar, T.V., Hendryx, S.: Transformation of SBVR business design to UML models. In: Proceedings of the 1st India Software Engineering Conference ISEC 2008, pp. 29–38. ACM, New York (2008)Google Scholar
  14. 14.
    Steen, B., Pires, L., Iacob, M.E.: Automatic generation of optimal business processes from business rules. In: 2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 117–126, October 2010Google Scholar
  15. 15.
    Skersys, T., Kapocius, K., Butleris, R., Danikauskas, T.: Extracting business vocabularies from business process models: SBVR and BPMN standards-based approach. Comput. Sci. Inf. Syst. 11, 1515–1535 (2014)CrossRefGoogle Scholar
  16. 16.
    Tantan, O.C., Akoka, J.: Automated transformation of business rules into business processes. In: Proceedings of the Twenty-Sixth International Conference on Software Engineering and Knowledge Engineering, pp. 684–687 (2014)Google Scholar
  17. 17.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Raj, A., Agrawal, A., Prabhakar, T.V.: Transformation of business processes into UML models: an SBVR approach. Int. J. Sci. Eng. Res. 4(7), 647–661 (2013). ISSN: 2229-5518Google Scholar
  19. 19.
    Mertens, S., Gailly, F., Poels, G.: Enhancing declarative process models with DMN decision logic. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 151–165. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    OMG: Semantics of business vocabulary and business rules (SBVR). Version 1.0: formal specification. Technical report, Object Management Group (OMG) (2008)Google Scholar
  21. 21.
    Nalepa, G.J., Kluza, K., Kaczor, K.: SBVRwiki a web-based tool for authoring of business rules. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 703–713. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Kluza, K., Kutt, K., Wozniak, M.: SBVRwiki (tool presentation). In: Nalepa, G.J., Baumeister, J. (eds.) Proceedings of 10th Workshop on Knowledge Engineering and Software Engineering (KESE10) Co-located with 21st European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech Republic, 19 August 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations