Parallel Tabu Search Algorithm with Uncertain Data for the Flexible Job Shop Problem

  • Wojciech Bożejko
  • Mariusz Uchroński
  • Mieczysław Wodecki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)

Abstract

In many real production systems the parameters of individual operations are not deterministic. Typically, they can be modeled by fuzzy numbers or distributions of random variables. In this paper we consider the flexible job shop problem with machine setups and uncertain times of operation execution. Not only we present parallel algorithm on GPU with fuzzy parameters but also we investigate its resistance to random disturbance of the input data.

References

  1. 1.
    Balin, S.: Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation. Inf. Sci. 161, 3551–3569 (2011)CrossRefGoogle Scholar
  2. 2.
    Bożejko, W., Wodecki, M.: On the theoretical properties of swap multimoves. Oper. Res. Lett. 35(2), 227–231 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bożejko, W., Uchroski, M., Wodecki, M.: The new golf neighborhood for the flexible job shop problem. In: Proceedings of the ICCS 2010, Procedia Computer Science 1, pp. 289–296. Elsevier (2010)Google Scholar
  4. 4.
    Bożejko, W., Uchroski, M., Wodecki, M.: Solving the flexible job shop problem on Multi-GPU. In: Proceedings of the ICCS 2012, Procedia Computer Science 9, pp. 378–394. Elsevier (2012)Google Scholar
  5. 5.
    Bożejko, W., Uchroski, M., Wodecki, M.: Block approach to the cyclic flow shop scheduling. Comput. Ind. Eng. 81, 158–166 (2015)CrossRefGoogle Scholar
  6. 6.
    Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41, 157–183 (1993)CrossRefMATHGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Theorie des Possibilites. Applications a la representation des connaissances en informatique. Masson, Paris (1988)MATHGoogle Scholar
  8. 8.
    Hodgson, T.J., King, R.E., Stanfield, P.M.: Ready-time scheduling with stochastic service time. Oper. Res. 45(5), 779–783 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA Int. J. Manag. Sci. 11, 91–95 (1983)CrossRefGoogle Scholar
  10. 10.
    Prade, H.: Uzing fuzzy set theory in a scheduling problem. Fuzzy Sets Syst. 2, 153–165 (1979)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sowiski, R., Hapke, M.: Scheduling under Fuzziness. Physica-Verlag, New York (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wojciech Bożejko
    • 1
  • Mariusz Uchroński
    • 2
  • Mieczysław Wodecki
    • 3
  1. 1.Department of Control Science and Mechatronics, Faculty of ElectronicsWrocław University of TechnologyWrocławPoland
  2. 2.Wrocław Centre of Networking and SupercomputingWrocławPoland
  3. 3.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations