New Integral Approach to the Specification of STPU-Solutions

  • Krystian Jobczyk
  • Antoni Ligeza
  • Krzysztof Kluza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)


This paper is aimed at proposing some new formal system of a fuzzy logic – suitable for representation the “before” relation between temporal intervals. This system and an idea of the integral-based approach to the representation of the Allen’s relations between temporal intervals is later used for a specification of a class of solutions of the so-called Simple Temporal Problem under Uncertainty and it extends the classical considerations of R. Dechter and L. Khatib in this area.


Simple temporal problem under uncertainty Fuzzy logic Integral approach Specification of solutions 



Authors of this paper are grateful to Katarzyna Grobler for some useful remarks and comments.


  1. 1.
    Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dechter, R.: Temporal causal networks. Artif. Intell. 49, 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Grobler-Debska, A., Kucharska, E., Dudek-Dyduch, E.: Idea of switching algebraic-logical models in flow-shop scheduling problem with defects. In: Methods and Models in Automaton and Robotics (MMAR), pp. 532–537 (2013)Google Scholar
  4. 4.
    Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jobczyk, K., Ligeza, A.: Temporal planning in terms of a fuzzy integral logic (fli) versus temporal planning in pddl. In: Proceedings of INISTA, pp. 1–8 (2015)Google Scholar
  6. 6.
    Jobczyk, K., Ligeza, A., Bouzid, M., Karczmarczuk, J.: Comparative approach to the multi-valued logic construction for preferences. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 172–183. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Jobczyk, K., Ligeza, A., Karczmarczuk, J.: Fuzzy temporal approach to the handling of temporal interval relations and preferences. In: Proceedings of INISTA (2015)Google Scholar
  8. 8.
    Jobczyk, K., Bouzid, M., Ligeza, A., Karczmarczuk, J.: Fuzzy integral logic expressible by convolutions. In: Proceeding of ECAI 2014, pp. 1042–1043 (2014)Google Scholar
  9. 9.
    Jobczyk, K., Bouzid, M., Ligeza, A., Karczmarczuk, J.: Fuzzy logic for representation of temporal verbs and adverbs ’often’ and ’many times’. In: Proceeding of LENSL 2011 Tokyo (2014)Google Scholar
  10. 10.
    Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal reasoning about preferences. In: Proceedings of IJCAI-01, pp. 322–327 (2001)Google Scholar
  11. 11.
    Ohlbach, H.: Relations between time intervals. In: 11th Internal Symposium on Temporal Representation and Reasoning, vol. 7, pp. 47–50 (2004)Google Scholar
  12. 12.
    Ohlbach, H.-J.: Fuzzy time intervals and relations-the futire library. Research Report PMS-04/04, Inst. f. Informatik, LMU Munich (2004)Google Scholar
  13. 13.
    Rossi, F., Yorke-Smith, N., Venable, K.: Temporal reasoning with preferences and uncertainty. Proc. AAAI 8, 1385–1386 (2003)Google Scholar
  14. 14.
    Vidal, T., Fargier, H.: Handling contingency in temporal constraints networks: from consistency to controllabilities. J. Exp. Tech. Artif. Intell. 11(1), 23–45 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Krystian Jobczyk
    • 1
    • 2
  • Antoni Ligeza
    • 2
  • Krzysztof Kluza
    • 2
  1. 1.University of CaenCaenFrance
  2. 2.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations