Advertisement

An Idea of the Dynamic Signature Verification Based on a Hybrid Approach

  • Marcin ZalasińskiEmail author
  • Krzysztof Cpałka
  • Elisabeth Rakus-Andersson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9693)

Abstract

Dynamic signature verification is a very interesting biometric issue. It is difficult to realize because signatures of the user are characterized by relatively high intra-class and low inter-class variability. However, this method of an identity verification is commonly socially acceptable. It is a big advantage of the dynamic signature biometric attribute. In this paper we propose a new hybrid algorithm for the dynamic signature verification based on global and regional approach. We present the simulation results of the proposed method for BioSecure DS2 database, distributed by the BioSecure Association.

Keywords

Behavioural biometrics Dynamic signature Hybrid approach Flexible neuro-fuzzy system One-class classifier 

Notes

Acknowledgment

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

References

  1. 1.
    Akimoto, T., Ogata, T.: Experimental development of a focalization mechanism in an integrated narrative generation system. J. Artif. Intell. Soft Comput. Res. 5(3), 177–188 (2015)CrossRefGoogle Scholar
  2. 2.
    Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) ISAT 2015 - Part I. Advances in Intelligent Systems and Computing, vol. 429, pp. 125–134. Springer, Heidelberg (2016)Google Scholar
  3. 3.
    Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Bartczuk, Ł., Rutkowska, D.: Type-2 fuzzy decision trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bartczuk, Ł., Rutkowska, D.: Medical diagnosis with type-2 fuzzy decision trees. In: Kkacki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. Advances in Intelligent and Soft Computing, vol. 65, pp. 11–21. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2015)CrossRefGoogle Scholar
  7. 7.
    Chu, J.L., Krzyżak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)CrossRefGoogle Scholar
  8. 8.
    Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Sig. Process. Image Commun. 15(6), 559–565 (2000)CrossRefGoogle Scholar
  9. 9.
    Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)Google Scholar
  11. 11.
    Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)CrossRefGoogle Scholar
  12. 12.
    Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)Google Scholar
  14. 14.
    Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41, 4170–4180 (2014)CrossRefGoogle Scholar
  15. 15.
    Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)CrossRefGoogle Scholar
  16. 16.
    Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. (2016, in press). http://dx.doi.org/10.1016/j.asoc.2016.02.017
  17. 17.
    Doroz, R., Porwik, P., Orczyk, T.: Dynamic signature verification method based on association of features with similarity measures. Neurocomputing 171, 921–931 (2016)CrossRefGoogle Scholar
  18. 18.
    Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 47–54. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 56–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 443–450. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Faúndez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern Recogn. 40, 981–992 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Faúndez-Zanuy, M., Pascual-Gaspar, J.M.: Efficient on-line signature recognition based on multi-section vector quantization. Formal Pattern Anal. Appl. 14, 37–45 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Fierrez, J., Ortega-Garcia, J., Ramos, D., Gonzalez-Rodriguez, J.: HMM-based on-line signature verification: feature extraction and signature modeling. Pattern Recogn. Lett. 28, 2325–2334 (2007)CrossRefGoogle Scholar
  27. 27.
    Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)Google Scholar
  28. 28.
    Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS, vol. 9119, pp. 706–714. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  29. 29.
    Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 540–547. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Gabryel, M., Woźniak, M., Damaševičius, R.: An application of differential evolution to positioning queueing systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 379–390. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  31. 31.
    Galkowski, T., Pawlak, M.: Nonparametric extension of regression functions outside domain. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNAI, vol. 8467, pp. 518–530. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  32. 32.
    Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)CrossRefGoogle Scholar
  33. 33.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNAI, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  34. 34.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małlysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  35. 35.
    Held, P., Dockhorn, A., Kruse, R.: On merging and dividing social graphs. J. Artif. Intell. Soft Comput. Res. 5(1), 23–49 (2015)CrossRefGoogle Scholar
  36. 36.
    Homepage of Association BioSecure. http://biosecure.it-sudparis.eu. Accessed 29 Dec 2015
  37. 37.
    Houmani, N., Garcia-Salicetti, S., Mayoue, A., Dorizzi, B.: BioSecure Signature Evaluation Campaign 2009 (BSEC 2009): Results. http://biometrics.it-sudparis.eu/BSEC2009/downloads/BSEC2009_results.pdf. Accessed 29 Dec 2015
  38. 38.
    Ibrahim, M.T., Khan, M.A., Alimgeer, K.S., Khan, M.K., Taj, I.A., Guan, L.: Velocity and pressure-based partitions of horizontal and vertical trajectories for on-line signature verification. Pattern Recogn. 43, 2817–2832 (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 90–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 92–99. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44, 2231–2240 (2011)CrossRefGoogle Scholar
  42. 42.
    Jimenez, F., Kanoh, M., Yoshikawa, T., Furuhashi, T., Nakamura, T.: Effect of robot utterances using onomatopoeia on collaborative learning. J. Artif. Intell. Soft Comput. Res. 4(2), 125–131 (2014)CrossRefGoogle Scholar
  43. 43.
    Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  44. 44.
    Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Koshiyama, A.S., Vellasco, M.M., Tanscheit, R.: Gpfis-control: a genetic fuzzy system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)CrossRefGoogle Scholar
  46. 46.
    Laskowski, Ł., Laskowska, M.: Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: probing of synthesis route. J. Solid State Chem. 220, 221–226 (2014)CrossRefGoogle Scholar
  47. 47.
    Laskowski, Ł., Laskowska, M., Bałanda, M., Fitta, M., Kwiatkowska, J., Dziliński, K., Karczmarska, A.: Mesoporous silica SBA-15 functionalized by nickel-phosphonic units: Raman and magnetic analysis. Microporous Mesoporous Mater. 200, 253–259 (2014)CrossRefGoogle Scholar
  48. 48.
    Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS, vol. 9119, pp. 72–78. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  49. 49.
    Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 89–96. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  50. 50.
    Lee, P.M., Hsiao, T.C.: Applying LCS to affective image classification in spatial-frequency domain. J. Artif. Intell. Soft Comput. Res. 4(2), 99–123 (2014)CrossRefGoogle Scholar
  51. 51.
    Lumini, A., Nanni, L.: Ensemble of on-line signature matchers based on overcomplete feature generation. Expert Syst. Appl. 36, 5291–5296 (2009)CrossRefGoogle Scholar
  52. 52.
    Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  53. 53.
    Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  54. 54.
    Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  55. 55.
    Maiorana, E.: Biometric cryptosystem using function based on-line signature recognition. Expert Syst. Appl. 37, 3454–3461 (2010)CrossRefGoogle Scholar
  56. 56.
    Moon, J.H., Lee, S.G., Cho, S.Y., Kim, Y.S.: A hybrid online signature verification system supporting multi-confidential levels defined by data mining techniques. Int. J. Intell. Syst. Technol. Appl. 9, 262–273 (2010)Google Scholar
  57. 57.
    Nanni, L., Lumini, A.: Advanced methods for two-class problem formulation for on-line signature verification. Neurocomputing 69, 854–857 (2006)CrossRefGoogle Scholar
  58. 58.
    Nanni, L., Maiorana, E., Lumini, A., Campisi, P.: Combining local, regional and global matchers for a template protected on-line signature verification system. Expert Syst. Appl. 37, 3676–3684 (2010)CrossRefGoogle Scholar
  59. 59.
    Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 318–324. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  60. 60.
    Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 459–473. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  61. 61.
    Pietruczuk, L., Zurada, J.M.: Weak convergence of the recursive parzen-type probabilistic neural network in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 521–529. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  62. 62.
    Rutkowski, L.: On-line identification of time-varying systems by nonparametric techniques. IEEE Trans. Autom. Control 27(1), 228–230 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circ. Syst. 33(8), 812–818 (1986)CrossRefzbMATHGoogle Scholar
  64. 64.
    Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Sig. Process. 182, 129–137 (1989)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Trans. Inf. Theory 37(1), 214–216 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)CrossRefzbMATHGoogle Scholar
  67. 67.
    Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Rutkowski, L.: Computational Intelligence. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  69. 69.
    Rutkowski, L., Cpałka, K.: Flexible structures of neuro-fuzzy systems. In: Sincak, P., Vascak, J. (eds.) Quo Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, vol. 54, pp. 479–484. Springer, Heidelberg (2000)Google Scholar
  70. 70.
    Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press, Amsterdam (2002)Google Scholar
  71. 71.
    Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November 2002, CD (2002)Google Scholar
  72. 72.
    Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)Google Scholar
  73. 73.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)CrossRefGoogle Scholar
  74. 74.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)CrossRefGoogle Scholar
  75. 75.
    Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)CrossRefGoogle Scholar
  76. 76.
    Scherer, R.: Neuro-fuzzy systems with relation matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 210–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  77. 77.
    Scherer, R., Rutkowski, L.: Relational equations initializing neuro-fuzzy system. In: Proceedings of the 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 18–22 (2002)Google Scholar
  78. 78.
    Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  79. 79.
    Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Application of neural networks in assessing changes around implant after total hip arthroplasty. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 335–340. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  80. 80.
    Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Forecasting wear of head and acetabulum in hip joint implant. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 341–346. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  81. 81.
    Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 455–467. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  82. 82.
    Smyczyńska, J., Hilczer, M., Smyczyńska, U., Stawerska, R., Tadeusiewicz, R., Lewiński, A.: Artificial neural models - a novel tool for predicting the efficacy of growth hormone (GH) therapy in children with short stature. Neuroendocrinol. Lett. 36(4), 348–353 (2015). ISSN: 0172-780X, ISSN-L: 0172-780XGoogle Scholar
  83. 83.
    Smyczyńska, U., Smyczyńska, J., Hilczer, M., Stawerska, R., Lewiński, A., Tadeusiewicz, R.: Artificial neural networks - a novel tool in modelling the effectiveness of growth hormone (GH) therapy in children with GH deficiency. Pediatr. Endocrinol. 14, no. 2(51), 9–18 (2015)Google Scholar
  84. 84.
    Tadeusiewicz, R.: Neural networks as a tool for modeling of biological systems. Bio-Algorithms Med-Syst. 11(3), 135–144 (2015)Google Scholar
  85. 85.
    Tadeusiewicz, R.: Neural networks in mining sciences - general overview and some representative examples. Arch. Min. Sci. 60(4), 971–984 (2015)Google Scholar
  86. 86.
    Wang, X., Liu, X., Japkowicz, N., Matwin, S.: Automated approach to classification of mine-like objects using multiple-aspect sonar images. J. Artif. Intell. Soft Comput. Res. 4(2), 133–148 (2014)CrossRefGoogle Scholar
  87. 87.
    Yeung, D.-Y., Chang, H., Xiong, Y., George, S.E., Kashi, R.S., Matsumoto, T., Rigoll, G.: SVC2004: first international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  88. 88.
    Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, In: pp. 38–53. Academic Publishing House EXIT (2011)Google Scholar
  89. 89.
    Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 342–350. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  90. 90.
    Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  91. 91.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  92. 92.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  93. 93.
    Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  94. 94.
    Zhao, W., Lun, R., Espy, D.D., Ann Reinthal, M.: Realtime motion assessment for rehabilitation exercises: Integration of kinematic modeling with fuzzy inference. J. Artif. Intell. Soft Comput. Res. 4(4), 267–285 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcin Zalasiński
    • 1
    Email author
  • Krzysztof Cpałka
    • 1
  • Elisabeth Rakus-Andersson
    • 2
  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland
  2. 2.Department of Mathematics and ScienceBlekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations