Advertisement

Interactive Discovery and Retrieval of Web Resources Containing Home Made Explosive Recipes

  • George KalpakisEmail author
  • Theodora Tsikrika
  • Christos Iliou
  • Thodoris Mironidis
  • Stefanos Vrochidis
  • Jonathan Middleton
  • Una Williamson
  • Ioannis Kompatsiaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9750)

Abstract

This work investigates the effectiveness of a novel interactive search engine in the context of discovering and retrieving Web resources containing recipes for synthesizing Home Made Explosives (HMEs). The discovery of HME Web resources both on Surface and Dark Web is addressed as a domain-specific search problem; the architecture of the search engine is based on a hybrid infrastructure that combines two different approaches: (i) a Web crawler focused on the HME domain; (ii) the submission of HME domain-specific queries to general-purpose search engines. Both approaches are accompanied by a user-initiated post-processing classification for reducing the potential noise in the discovery results. The design of the application is built based on the distinctive nature of law enforcement agency user requirements, which dictate the interactive discovery and the accurate filtering of Web resources containing HME recipes. The experiments evaluating the effectiveness of our application demonstrate its satisfactory performance, which in turn indicates the significant potential of the adopted approaches on the HME domain.

Keywords

Interactive search engine Homemade explosives Dark web 

Notes

Acknowledgement

This work was supported by the HOMER (312388) FP7 project.

References

  1. 1.
    Olston, C., Najork, M.: Web crawling. J. Found. Trends Inf. Retrieval 4(3), 175–246 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: walking back and forth for mining query templates. In: 19th ACM International Conference on World Wide Web (WWW 2010), pp. 1–10 (2010)Google Scholar
  3. 3.
    Oyama, S., Kokubo, T., Ishida, T., Yamada, T., Kitamura, Y.: Keyword spices: a new method for building domain-specific web search engines. In: 17th International Joint Conferences on Artificial Intelligence, IJCAI-2001, pp. 1457–1463 (2001)Google Scholar
  4. 4.
    Oyama, S., Kokubo, T., Ishida, T.: Domain-specific web search with keyword spices. J. IEEE Trans. Knowl. Data Eng. 16(1), 17–27 (2004)CrossRefGoogle Scholar
  5. 5.
    Stenersen, A.: The internet: a virtual training camp? J. Terrorism Polit. Violence 20, 215–233 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, H.: Dark web: exploring and mining the dark side of the web. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, p. 1. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Fu, T., Abbasi, A., Chen, H.: A focused crawler for Dark Web forums. J. Am. Soc. Inf. Sci. Technol. 61(6), 1213–1231 (2010)Google Scholar
  8. 8.
    Chen, H., Chung, W., Qin, J., Reid, E., Sageman, M., Weimann, G.: Uncovering the dark Web: a case study of Jihad on the Web. J. Am. Soc. Inf. Sci. Technol. 59(8), 1347–1359 (2008)CrossRefGoogle Scholar
  9. 9.
    Kalpakis, G., Tsikrika, T., Markatopoulou, F., Pittaras, N., Vrochidis, S., Mezaris, V., Patras, I., Kompatsiaris, I.: Concept detection on multimedia web resources about home made explosives. In: 10th International Conference on Availability, Reliability and Security (ARES 2015), pp. 632–641 (2015)Google Scholar
  10. 10.
    Tsikrika, T., Kalpakis, G., Vrochidis, S., Kompatsiaris, I., Paraskakis, I., Kavasidis, I., Middleton, J., Williamson, U.: A framework for the discovery, analysis, and retrieval of multimedia homemade explosives information on the Web. In: 10th International Conference on Availability, Reliability and Security (ARES 2015), pp. 601–610 (2015)Google Scholar
  11. 11.
    Tsikrika, T., Moumtzidou, A., Vrochidis, S., Kompatsiaris, I.: Focussed crawling of environmental web resources: a pilot study on the combination of multimedia evidence. In: 1st International Workshop on Environmental Multimedia Retrieval (EMR 2014), in conjunction with the ACM Conference on Multimedia Retrieval (ICMR 2014), pp. 61–68 (2014)Google Scholar
  12. 12.
    Pant, G., Srinivasan, P.: Learning to crawl: comparing classification schemes. ACM Trans. Inf. Syst. 23(4), 430–462 (2005)CrossRefGoogle Scholar
  13. 13.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (1994)Google Scholar
  14. 14.
    Cortes, C., Vapnik, V.: Support-vector networks. J. Mach. Learn. 20(3), 273–297 (1997)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • George Kalpakis
    • 1
    Email author
  • Theodora Tsikrika
    • 1
  • Christos Iliou
    • 1
  • Thodoris Mironidis
    • 1
  • Stefanos Vrochidis
    • 1
  • Jonathan Middleton
    • 2
  • Una Williamson
    • 2
  • Ioannis Kompatsiaris
    • 1
  1. 1.Information Technology InstituteCERTHThessalonikiGreece
  2. 2.Police Service Northern IrelandBelfastUK

Personalised recommendations