Advertisement

Chaos Enhanced Repulsive MC-PSO/DE Hybrid

  • Michal PluhacekEmail author
  • Roman Senkerik
  • Adam Viktorin
  • Ivan Zelinka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9692)

Abstract

In this paper a previously proposed method is extended with pseudo-random number generator based on chaotic sequences. Several recent approaches for designing the evolutionary computational techniques are merged in the proposed method. The proposed method represents a hybridization of heterogeneous swarm based PSO and differential evolution extended with the chaotic sequences implementation. The performance of the proposed method is tested on IEEE CEC 2013 benchmark set.

Keywords

Particle swarm optimization PSO Differential evolution DE Chaos Hybrid method 

References

  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 69–73. I. S (1998)Google Scholar
  3. 3.
    Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)Google Scholar
  4. 4.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011). ISSN 1568–4946CrossRefGoogle Scholar
  5. 5.
    Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd, Maidenhead (1999)Google Scholar
  6. 6.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the per formance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  8. 8.
    Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons Fractals 40(4), 1715–1734 (2009). ISSN 0960–0779MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermalvacuum system. Appl. Soft Comput. 8(4), 1354–1364 (2008)CrossRefGoogle Scholar
  10. 10.
    Senkerik, R., Pluhacek, M., Kominkova Oplatkova, Z., Davendra, D., Zelinka, I.: Investigation on the differential evolution driven by selected six chaotic systems in the task of reactor geometry optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3087–3094, 20–23, June 2013Google Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Davendra, D., Oplatkova, Z.K., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 66, 122–134 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft. Comput. 18, 631–639 (2014)CrossRefGoogle Scholar
  13. 13.
    Pant, M., Thangaraj, R., Grosan, C., Abraham, A.: Hybrid differential evolution - particle swarm optimization algorithm for solving global optimization problems. In: Third International Conference on Digital Information Management, ICDIM 2008, pp. 18–24, 13–16, November 2008Google Scholar
  14. 14.
    Xiaobing, Y., Cao, J., Shan, H., Zhu, L., Guo, J.: An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. The Sci. World J., vol. 2014, Article ID 215472, p. 16 (2014). doi: 10.1155/2014/215472
  15. 15.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Multiple choice strategy – a novel approach for particle swarm optimization – preliminary study. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 36–45. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Investigation on the performance of a new multiple choice strategy for PSO Algorithm in the task of large scale optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2007–2011, 20–23 June 2013Google Scholar
  17. 17.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: MC-PSO/DE hybrid with repulsive strategy – initial study. In: Onieva, E., Santos, I., Osaba, E., Quintian, H., Corchado, E. (eds.) HAIS 2015. LNCS, vol. 9121, pp. 213–220. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernendez-Diaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization, Technical Report 201212. Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Computational Intelligence Laboratory (2013)Google Scholar
  19. 19.
    Nepomuceno, F., Engelbrecht, A.: A self-adaptive heterogeneous pso for real-parameter optimization. In: Proceedings of the IEEE International Conference on Evolutionary Computation (2013)Google Scholar
  20. 20.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  21. 21.
    Riget, J.: Vestterstrom J S: A Diversity-guided particle swarm optimizer - the ARPSO. University of Aarhus, Denmark, Technical report, EVAlife, Department of Computer Science (2002)Google Scholar
  22. 22.
    Pavlas, M., Nevrl, V., Popela, P., omplk, R.: Heuristic for generation of waste transportation test networks. In: 21st International Conference on Soft Computing, MENDEL 2015, Brno, Czech Republic, pp. 189–194, 23–25 June 2015Google Scholar
  23. 23.
    Roupec, J., Popela, P., Hrabec, D., Novotn, J., Olstad, A., Haugen, K.: Hybrid algorithm for network design problem with uncertain demands. In: Proceedings of the World Congress on Engineering and Computer Science, WCECS 2013. Lecture Notes in Engineering and Computer Science, vol. 1, pp. 554–559 (2013)Google Scholar
  24. 24.
    Hrabec, D., Popela, P., Roupec, J., Mazal, J., Stodola, P.: Two-stage stochastic programming for transportation network design problem. In: Matoušek, R. (ed.) Mendel 2015. Advances in Intelligent Systems and Computing, vol. 378, pp. 17–25. Springer, Switzerland (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michal Pluhacek
    • 1
    Email author
  • Roman Senkerik
    • 1
  • Adam Viktorin
    • 1
  • Ivan Zelinka
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-porubaCzech Republic

Personalised recommendations