Advertisement

Aspects of Evolutionary Construction of New Flexible PID-fuzzy Controller

  • Krystian ŁapaEmail author
  • Jacek Szczypta
  • Takamichi Saito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9692)

Abstract

In this paper a new approach for designing control systems is presented. It is based on ensemble of PID controller and flexible neuro-fuzzy system with dynamic structure. A hybrid population-based algorithm is proposed to select the structure and its parameters. In this hybridization a genetic algorithm is used to select the controller structure and evolutionary strategy is used to simultaneously select the controller parameters. The proposed approach allows design interpretable control systems based on different control criteria and different controlled object. The proposed controller structure and proposed learning algorithm were tested on typical control problem.

Keywords

Evolutionary algorithm PID algorithm Fuzzy system Structure selection 

Notes

Acknowledgment

The project was financed by the National Science Center (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

References

  1. 1.
    Abdullah, I.A.O., Ayman, A.A.L.: The advantages of PID fuzzy controllers over the conventional types. Am. J. Appl. Sci. 5(6), 653–658 (2008)CrossRefGoogle Scholar
  2. 2.
    Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft. Comput. 15(10), 1959–1980 (2011)CrossRefGoogle Scholar
  3. 3.
    Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Świa̧tek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology–ISAT 2015–Part I. AISC, vol. 429, pp. 125–134. Springer, Switzerland (2016)Google Scholar
  4. 4.
    Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Bartczuk, Ł., Rutkowska, D.: Medical diagnosis with type-2 fuzzy decision trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bartczuk, Ł., Rutkowska, D.: Type-2 fuzzy decision trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Boiko, I.: Variable-structure PID controller for level process. Control Eng. Pract. 21(5), 700–707 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. A: Theor. Meth. Appl. 71, 1659–1672 (2009)CrossRefGoogle Scholar
  10. 10.
    Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Trans. Neural Netw. 20, 701–714 (2009)CrossRefGoogle Scholar
  11. 11.
    Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)Google Scholar
  12. 12.
    Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)CrossRefGoogle Scholar
  13. 13.
    Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cpałka K., Rutkowski L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1764–1769. Montreal (2005)Google Scholar
  15. 15.
    Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)Google Scholar
  16. 16.
    Cpałka K., Rutkowski L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), pp. 8510–8516. IEEE, Vancouver (2006)Google Scholar
  17. 17.
    Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)CrossRefGoogle Scholar
  18. 18.
    Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)CrossRefGoogle Scholar
  19. 19.
    Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft. Comput. 43, 47–56 (2016). http://dx.doi.org/10.1016/j.asoc.2016.02.017 CrossRefGoogle Scholar
  20. 20.
    Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R. (eds.), Biocybernetics and Biomedical Engineering 2000. Neural Networks, Akademicka Oficyna Wydawnicza, EXIT, Warsaw 2000, vol. 6 (in Polish) (2000)Google Scholar
  21. 21.
    Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)CrossRefGoogle Scholar
  24. 24.
    Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)CrossRefGoogle Scholar
  26. 26.
    Radu, V.: Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Hayashi, Y., Tanaka, Y., Takagi, T., Saito, T., Iiduka, H., Kikuchi, H., Bologna, G., Mitra, S.: Recursive-rule extraction algorithm with j48graft and applications to generating credit scores. J. Artif. Intell. Soft Comput. Res. 6(1), 35–44 (2016)CrossRefGoogle Scholar
  28. 28.
    Ishibuchi, H., Nakashima, T., Murata, T.: Comparsion of the Michigan and Pittsburgh approaches to the design of fuzzy classification systems. Electron. Commun. Jpn. 80(12), 379–387 (1997)CrossRefGoogle Scholar
  29. 29.
    Kasthurirathna, D., Piraveenan, M., Uddin, S.: Evolutionary stable strategies in networked games: the influence of topology. J. Artif. Intell. Soft Comput. Res. 5(2), 83–95 (2015)CrossRefGoogle Scholar
  30. 30.
    Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Leva, A., Papadopoulos, A.V.: Tuning of event-based industrial controllers with simple stability guarantees. J. Process Control 23, 1251–1260 (2013)CrossRefGoogle Scholar
  32. 32.
    Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  33. 33.
    Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 247–260. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  36. 36.
    Li, X., Er, M.J., Lim, B.S.: Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 20, 405–419 (2010)CrossRefGoogle Scholar
  37. 37.
    Maggio, M., Bonvini, M., Leva, A.: The PID+p controller structure and its contextual autotuning. J. Process Control 22, 1237–1245 (2012)CrossRefGoogle Scholar
  38. 38.
    Liu, C., Sun, F.: Lens distortion correction using ELM. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-A. (eds.) Proceedings of ELM-2014 Volume 2, PALO, vol. 4, pp. 21–30. Springer, Heidelberg (2014)Google Scholar
  39. 39.
    Marquez A. A., Marquez F. A., Peregrin A.: A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: IEEE International Conference on Fuzzy Systems, pp. 1–7 (2010)Google Scholar
  40. 40.
    Malhotra, R., Sodhi, R.: Boiler flow control using PID and fuzzy logic controller. IJCSET 1(6), 315–319 (2011)Google Scholar
  41. 41.
    Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy knowledge bases: a cointension based approach. Int. J. Approximate Reasoning 52(4), 501–518 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)CrossRefGoogle Scholar
  43. 43.
    Natsheh, E., Buragga, K.A.: Comparison between conventional and fuzzy logic PID controllers for controlling DC motors. IJCSI Int. J. Comput. Sci. Issues 7(5), 128–134 (2010)Google Scholar
  44. 44.
    Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    Ribića, A.I., Mataušek, M.R.: A dead-time compensating PID controller structure and robust tuning. J. Process Control 22, 1340–1349 (2012)CrossRefGoogle Scholar
  46. 46.
    Rutkowski, L.: Sequential estimates of probability densities by orthogonal series and their application in pattern classification. IEEE Trans. Syst. Man Cybern. 10(12), 918–920 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Syst. Control Lett. 6(1), 33–35 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels. Int. J. Syst. Sci. 16(9), 1123–1130 (1985)CrossRefzbMATHGoogle Scholar
  49. 49.
    Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)CrossRefzbMATHGoogle Scholar
  50. 50.
    Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  53. 53.
    Rutkowski, L., Cpałka, K.: Flexible structures of neuro-fuzzy systems. Quo Vadis Computational Intelligence, Studies in Fuzziness and Soft Computing, Springer 54, 479–484 (2000)Google Scholar
  54. 54.
    Rutkowski L., Cpałka K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computational Intelligence, vol. 76, pp. 85–90. Koszyce (2002)Google Scholar
  55. 55.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)CrossRefGoogle Scholar
  56. 56.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)CrossRefGoogle Scholar
  57. 57.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048–1059 (2015)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision Trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Engi. 25(6), 1272–1279 (2013)CrossRefGoogle Scholar
  59. 59.
    Rutkowski, L., Przybyl, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2), 1238–1247 (2012)CrossRefGoogle Scholar
  60. 60.
    Rutkowski, Leszek, Przybył, Andrzej, Cpałka, Krzysztof, Er, Meng Joo: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, Leszek, Scherer, Rafał, Tadeusiewicz, Ryszard, Zadeh, Lotfi A., Zurada, Jacek M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  61. 61.
    Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  62. 62.
    Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol. 19, pp. 570–577. Physica, Verlag (2003)CrossRefGoogle Scholar
  63. 63.
    Starczewski, J.T., Rutkowski, L.: Connectionist structures of type 2 fuzzy inference systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  64. 64.
    Cheng, S., Li, C.-W.: Fuzzy PDFF-IIR controller for PMSM drive systems. Control Eng. Pract. 19, 828–835 (2011)CrossRefGoogle Scholar
  65. 65.
    Yeomans, J.S.: A parametric testing of the firefly algorithm in the determination of the optimal osmotic drying parameters of mushrooms. J. Artif. Intell. Soft Comput. Res. 4(4), 257–266 (2014)CrossRefGoogle Scholar
  66. 66.
    Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  67. 67.
    Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  68. 68.
    Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  69. 69.
    Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 161–174. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  70. 70.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  71. 71.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  72. 72.
    Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Krystian Łapa
    • 1
    Email author
  • Jacek Szczypta
    • 1
  • Takamichi Saito
    • 2
  1. 1.Institute of Computational IntelligenceCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Department of Computer ScienceMeiji UniversityTokyoJapan

Personalised recommendations