Advertisement

Touchless Disambiguation Techniques for Wearable Augmented Reality Systems

  • Giuseppe Caggianese
  • Luigi Gallo
  • Pietro Neroni
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 55)

Abstract

The paper concerns target disambiguation techniques in egocentric vision for wearable augmented reality systems. In particular, the paper focuses on two of the most commonly used selection techniques in immersive environments: Depth Ray and SQUAD. The design and implementation of such techniques in a touchless augmented reality interface, together with the results of a preliminary usability evaluation carried out with inexpert users, are discussed. The user study provides insights on users’ preferences when dealing with the precision-velocity trade-off in selection tasks, carried out in an augmented reality scenario.

Keywords

Touchless interface Freehand interaction Wearable augmented reality Depth ray SQUAD 

References

  1. 1.
    Starner, T.: Project glass: an extension of the self. IEEE Pervasive Comput. 12(2), 14–16 (2013)CrossRefGoogle Scholar
  2. 2.
    Steed, A.: Towards a general model for selection in virtual environments. In: IEEE Symposium on 3D User Interfaces, 2006, 3DUI 2006, pp. 103–110. IEEE (2006)Google Scholar
  3. 3.
    Steed, A., Parker, C.: 3D selection strategies for head tracked and non-head tracked operation of spatially immersive displays. In: 8th International Immersive Projection Technology Workshop, pp. 13–14 (2004)Google Scholar
  4. 4.
    Liang, J., Green, M.: JDCAD: a highly interactive 3D modeling system. Comput. Graph. 18(4), 499–506 (1994)CrossRefGoogle Scholar
  5. 5.
    Vanacken, L., Grossman, T., Coninx, K.: Exploring the effects of environment density and target visibility on object selection in 3D virtual environments. In: IEEE Symposium on 3D User Interfaces, 2007, 3DUI’07. IEEE (2007)Google Scholar
  6. 6.
    Grossman, T., Balakrishnan, R.: The design and evaluation of selection techniques for 3D volumetric displays. In: Proceedings of the 19th Annual ACM symposium on User Interface Software and Technology. pp. 3–12. ACM (2006)Google Scholar
  7. 7.
    Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013)CrossRefGoogle Scholar
  8. 8.
    Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: A survey of design issues in spatial input. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, pp. 213–222. ACM (1994)Google Scholar
  9. 9.
    Kopper, R., Bacim, F., Bowman, D., et al.: Rapid and accurate 3D selection by progressive refinement. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 67–74. IEEE (2011)Google Scholar
  10. 10.
    Cashion, J., Wingrave, C., LaViola Jr., J.J.: Dense and dynamic 3D selection for game-based virtual environments. IEEE Transa. Visual. Comput. Graph. 18(4), 634–642 (2012)CrossRefGoogle Scholar
  11. 11.
    Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: Exploiting cloud technologies and context information for recommending touristic paths. Stud. Comput. Intell. 511, 281–287 (2014)CrossRefGoogle Scholar
  12. 12.
    Amato, F., Chianese, A., Moscato, V., Picariello, A., Sperli, G.: Snops: a smart environment for cultural heritage applications. In: Proceedings of the Twelfth International Workshop on Web Information and Data Management, WIDM ’12, pp. 49–56. ACM, New York, NY, USA (2012). http://doi.acm.org/10.1145/2389936.2389947
  13. 13.
    Chianese, A., Piccialli, F.: Improving user experience of cultural environment through IoT: the beauty or the truth case study. Smart Innovation, Syst. Technol. 40, 11–20 (2015)CrossRefGoogle Scholar
  14. 14.
    Chianese, A., Piccialli, F., Valente, I.: Smart environments and cultural heritage: a novel approach to create intelligent cultural spaces. J. Location Based Serv. 9(3), 209–234 (2015)CrossRefGoogle Scholar
  15. 15.
    Meta spaceglasses: https://www.metavision.com/
  16. 16.
    Caggianese, G., Neroni, P., Gallo, L.: Natural interaction and wearable augmented reality for the enjoyment of the cultural heritage in outdoor conditions. In: De Paolis, L.T., Mongelli, A. (eds.) Augmented and Virtual Reality, Lecture Notes in Computer Science, pp. 267–282. Springer International Publishing (2014)Google Scholar
  17. 17.
    Mine, M.R.: Virtual environment interaction techniques. Technical report, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (1995)Google Scholar
  18. 18.
    Gallo, L., Minutolo, A.: Design and comparative evaluation of smoothed pointing: a velocity-oriented remote pointing enhancement technique. Int. J. Hum. Comput. Stud. 70(4), 287–300 (2012)CrossRefGoogle Scholar
  19. 19.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22 (1932)Google Scholar
  20. 20.
    Uebersax, J.S.: Likert scales: Dispelling the confusion. http://www.john-uebersax.com/stat/likert.htm
  21. 21.
    Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Weerdmeester, B., Thomas, A., Mclelland, I.L. (eds.) Usability Evaluation in Industry. Taylor and Francis (1996)Google Scholar
  22. 22.
    Boring, S., Jurmu, M., Butz, A.: Scroll, tilt or move it: using mobile phones to continuously control pointers on large public displays. In: Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, OZCHI ’09, pp. 161–168. ACM, New York, NY, USA (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giuseppe Caggianese
    • 1
  • Luigi Gallo
    • 1
  • Pietro Neroni
    • 1
  1. 1.Institute for High Performance Computing and Networking National Research Council of Italy (ICAR-CNR)NaplesItaly

Personalised recommendations