3DHOG for Geometric Similarity Measurement and Retrieval on Digital Cultural Heritage Archives

  • Reimar Tausch
  • Hendrik Schmedt
  • Pedro Santos
  • Martin Schröttner
  • Dieter W. Fellner
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 55)

Abstract

With projects such as CultLab3D, 3D Digital preservation of cultural heritage will become more affordable and with this, the number of 3D-models representing scanned artefacts will dramatically increase. However, once mass digitization is possible, the subsequent bottleneck to overcome is the annotation of cultural heritage artefacts with provenance data. Current annotation tools are mostly based on textual input, eventually being able to link an artefact to documents, pictures, videos and only some tools already support 3D models. Therefore, we envisage the need to aid curators by allowing for fast, web-based, semi-automatic, 3D-centered annotation of artefacts with metadata. In this paper we give an overview of various technologies we are currently developing to address this issue. On one hand we want to store 3D models with similarity descriptors which are applicable independently of different 3D model quality levels of the same artefact. The goal is to retrieve and suggest to the curator metadata of already annotated similar artefacts for a new artefact to be annotated, so he can eventually reuse and adapt it to the current case. In addition we describe our web-based, 3D-centered annotation tool with meta- and object repositories supporting various databases and ontologies such as CIDOC-CRM.

Keywords

3D object retrieval Classification Descriptor 

References

  1. 1.
    Santos, P., Ritz, M., Tausch, R., Schmedt, H., Monroy, R., Stefano, A.D., Posniak, O., Fuhrmann, C., Fellner, D.W.: Cultlab3d—on the verge of 3d mass digitization. In: Klein, R., Santos, P. (eds.) Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Association (2014)Google Scholar
  2. 2.
    Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (2008). http://dx.doi.org/10.1007/s11042-007-0181-0
  3. 3.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002). http://doi.acm.org/10.1145/571647.571648
  4. 4.
    Ankerst, M., Kastenmller, G., Kriegel, H.P., Seidl, T.: 3d shape histograms for similarity search and classification in spatial databases. In: SSD’99, pp. 207–226. Springer (1999)Google Scholar
  5. 5.
    Knopp, J., Prasad, M., Van Gool, L.: Automatic shape expansion with verification to improve 3d retrieval, classification and matching. In: Eurographics Workshop—3D Object Retrieval (2013)Google Scholar
  6. 6.
    El-Mehalawi, M., Miller, R.A.: A database system of mechanical components based on geometric and topological similarity. part i: representation. Comput. Aided Des. 35(1), 83–94 (2003). http://www.sciencedirect.com/science/article/pii/S0010448501001774
  7. 7.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proceedings of the Shape Modeling International 2003 SMI ’03, pp. 130. IEEE Computer Society, Washington, DC, USA (2003)Google Scholar
  8. 8.
    Mohamed, W., Ben Hamza, A.: Reeb graph path dissimilarity for 3d object matching and retrieval. Visual Comput. 28(3), 305–318 (2012)Google Scholar
  9. 9.
    Yoon, S.M., Kuijper, A.: 3d model retrieval using the histogram of orientation of suggestive contours. In: Proceedings of the 7th international conference on Advances in visual computing—Volume Part II, ISVC’11, pp. 367–376. Springer-Verlag, Berlin, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2045195.2045238
  10. 10.
    Snchez-Cruz, H., Bribiesca, E.: A method of optimum transformation of 3d objects used as a measure of shape dissimilarity. Image Vision Comput. 21(12), 1027–1036 (2003)CrossRefGoogle Scholar
  11. 11.
    Scherer, M., Walter, M., Schreck, T.: Histograms of oriented gradients for 3D model retrieval. In: Proceedings of International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 41–48. University of West Bohemia, Plzen (2010)Google Scholar
  12. 12.
    Walter, M.: Implementierung und Evaluierung einer gradientbasierten Methode für das 3D Model Retrieval. Bachelor thesis, Darmstadt, TU (2009)Google Scholar
  13. 13.
    Adlib museum, http://www.adlibsoft.com (2016). Accessed 1 Feb 2016
  14. 14.
    zetcom ltd, http://www.zetcom.com (2016). Accessed 02 Feb 2016
  15. 15.
    System simulation, http://www.ssl.co.uk (2016). Accessed 01 Feb 2016
  16. 16.
  17. 17.
    Hunter, J., Yu, C.H.: Assessing the value of semantic annotation services for 3d museum artefacts. In: Sustainable Data from Digital Research Conference (SDDR 2011) (2011)Google Scholar
  18. 18.
    Artec, http://www.artec3d.com/software/artec-studio (2016). Accessed 03 Feb 2016
  19. 19.
    Smithsonian explorer, http://3d.si.edu/ (2016). Accessed 01 Feb 2016
  20. 20.
    Arnold, D.: 3d-coform: Tools and expertise for 3d collection formation. In: Proceedings of Electronic Information, the Visual Arts and Beyond, vol. 21, pp. 94–99 (2009)Google Scholar
  21. 21.
    Arnold, D.: Computer graphics and cultural heritage: continuing inspiration for future tools. Comput. Graphics Appl. 34, 70–79 (2014)CrossRefGoogle Scholar
  22. 22.
    Serna, S.P., Schmedt, H., Ritz, M., Stork, A.: Interactive semantic enrichment of 3D cultural heritage collections. In: Arnold, D., Kaminski, J., Niccolucci, F., Stork, A. (eds.) VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage. The Eurographics Association (2012)Google Scholar
  23. 23.
    Crofts, N., Doerr, M., Gill, T., Stead, S., Stiff, M.: Definition of the cidoc conceptual reference model. In: ICOM/CIDOC CRM Special Interest Group (2006)Google Scholar
  24. 24.
    Doerr, M., Theodoridou, M.: Crmdig: A generic digital provenance model for scientific observation. In: 3rd Workshop on the Theory and Practice of Provenance, TaPP’11, Heraklion, Crete, Greece, 20–21 Jun 2011. https://www.usenix.org/conference/tapp11/crmdig-generic-digital-provenance-model-scientific-observation
  25. 25.
    Pan, X., Schröttner, M., Havemann, S., Schiffer, T., Berndt, R., Hecher, M., Fellner, D.W.: A repository infrastructure for working with 3d assets in cultural heritage. Int. J. Herit. Digit. Era 2(1), 144–166 (2013)Google Scholar
  26. 26.
    Paquet, E., Rioux, M., Murching, A.M., Naveen, T., Tabatabai, A.J.: Description of shape information for 2-d and 3-d objects. Sig. Proc. Image Comm. 16(1–2), 103–122 (2000)Google Scholar
  27. 27.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  28. 28.
    Filler, A.: Euklidische und nichteuklidische Geometrie. BI-Wiss.-Verlag, Mathematische Texte (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Reimar Tausch
    • 1
  • Hendrik Schmedt
    • 1
  • Pedro Santos
    • 1
  • Martin Schröttner
    • 4
  • Dieter W. Fellner
    • 1
    • 2
    • 3
  1. 1.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany
  2. 2.Interactive Graphics Systems Group, TU DarmstadtDarmstadtGermany
  3. 3.Institut für ComputerGraphik and Wissensvisualisierung, TU GrazGrazAustria
  4. 4.Fraunhofer Austria Research GmbH, Visual ComputingGrazAustria

Personalised recommendations