A Dynamic Emotional Model for Agent Societies

  • J. A. RinconEmail author
  • A. Costa
  • P. Novais
  • V. Julian
  • C. Carrascosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9662)


This paper presents a first approximation of a dynamic emotional model to be employed in agent societies. The proposed model is based on the PAD emotional model and allows the representation of the emotional contagion phenomena of a heterogeneous group of agents which are capable of express emotions. Moreover, the proposal allows the definition of the social emotion of this group of agents. The model is mainly based on three elements: personality, empathy and affinity. These elements allow the characterization of each individual, causing them susceptible to vary in some degree the emotions of other individuals.


  1. 1.
    James, W.: What Is an Emotion? Wilder Publications, Radford (2007)Google Scholar
  2. 2.
    Fox, N.A., Calkins, S.D.: The development of self-control of emotion: intrinsic and extrinsic influences. Motiv. Emot. 27(1), 7–26 (2003)CrossRefGoogle Scholar
  3. 3.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. J. Pers. 60(2), 175–215 (1992)CrossRefGoogle Scholar
  4. 4.
    Ortony, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990)Google Scholar
  5. 5.
    Plutchik, R.: A general psychoevolutionary theory of emotion. In: Kellerman, H., Plutchik, R. (eds.) Emotion: Theory, Research, and Experience. Theories of Emotion, vol. 1, pp. 3–33. Academic Press, New York (1980)CrossRefGoogle Scholar
  6. 6.
    Mehrabian, A.: Analysis of affiliation-related traits in terms of the PAD temperament model. J. Psychol. 131(1), 101–117 (1997)CrossRefGoogle Scholar
  7. 7.
    Busso, C., Deng, Z., et al.: Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceedings of the 6th International Conference on Multimodal Interfaces, ICMI 2004, pp. 205–211. ACM, New York (2004)Google Scholar
  8. 8.
    Palo, H.K., Mohanty, M.N., Chandra, M.: Use of different features for emotion recognition using MLP network. In: Sethi, I.K. (ed.) Computational Vision and Robotics. Advances in Intelligent Systems and Computing, vol. 332, pp. 7–15. Springer, India (2015)Google Scholar
  9. 9.
    Bos, D.O.: EEG-based emotion recognition. In: The Influence of Visual and Auditory Stimuli, pp. 1–17 (2006)Google Scholar
  10. 10.
    Saunier, J., Jones, H.: In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 645–652 (2014)Google Scholar
  11. 11.
    Bosse, T., Duell, R., Memon, Z.A., Treur, J., Van Der Wal, C.N.: A multi-agent model for emotion contagion spirals integrated within a supporting ambient agent model. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 48–67. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Costa, Â., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl. 39(15), 12192–12204 (2012)CrossRefGoogle Scholar
  13. 13.
    Costa, A., Novais, P., Simoes, R.: A caregiver support platform within the scope of an ambient assisted living ecosystem. Sensors 14(3), 5654–5676 (2014)CrossRefGoogle Scholar
  14. 14.
    Van Minh, L., Adam, C., Canal, R., Gaudou, B., Tuong Vinh, H., Taillandier, P.: Simulation of the emotion dynamics in a group of agents in an evacuation situation. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 604–619. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Banarjee, S., Grosan, C., Abraham, A.: Emotional ant based modeling of crowd dynamics. In: Symbolic and Numeric Algorithms for Scientific Computing, 2005, SYNASC, p. 8. IEEE (2005)Google Scholar
  16. 16.
    Hawe, G.I., Coates, G., Wilson, D.T., Crouch, R.S.: Agent-based simulation for large-scale emergency response: a survey of usage and implementation. ACM Comput. Surv. (CSUR) 45(1), 8 (2012)CrossRefGoogle Scholar
  17. 17.
    Lungu, V.: Newtonian emotion system. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI. Studies in Computational Intelligence, vol. 446, pp. 307–315. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Bosse, T., Hoogendoorn, M., et al.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. JAAMAS 27(1), 52–84 (2013)Google Scholar
  19. 19.
    Barsade, S.G.: The ripple effect: emotional contagion and its influence on group behavior. Adm. Sci. Q. 47(4), 644–675 (2002)CrossRefGoogle Scholar
  20. 20.
    McDonald, N.M., Messinger, D.S., Acerbi, A., Lombo, J.A., Sanguineti, J.J.: The development of empathy: how, when, and why. In: Moral Behavior and Free Will: A Neurobiological and Philosophical Aprroach, pp. 341–368 (2011)Google Scholar
  21. 21.
    Rincon, J.A., Julian, V., Carrascosa, C.: Social emotional model. In: Demazeau, Y., Decker, K.S., Pérez, J.B., De la Prieta, F. (eds.) PAAMS 2015. LNCS, vol. 9086, pp. 199–210. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. A. Rincon
    • 1
    Email author
  • A. Costa
    • 2
  • P. Novais
    • 2
  • V. Julian
    • 1
  • C. Carrascosa
    • 1
  1. 1.D. Sistemas Informáticos y ComputaciónUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Centro ALGORITMI, Escola de EngenhariaUniversidade do MinhoGuimaraesPortugal

Personalised recommendations