Advertisement

The Functions of Endothelial Glycocalyx and Their Effects on Patient Outcomes During the Perioperative Period. A Review of Current Methods to Evaluate Structure-Function Relations in the Glycocalyx in Both Basic Research and Clinical Settings

  • FitzRoy E. CurryEmail author
  • Kenton P. Arkill
  • C. Charles Michel
Chapter

Abstract

The glycocalyx establishes the osmotic pressure difference of the plasma proteins across the vascular wall and plays a major role in determining the distribution of infused fluids in both normal and clinical settings. Loss of the glycocalyx compromises the retention of infused fluid in the plasma volume. On the basis of results from improved approaches to preserve and image glycocalyx structures, and quantitative evaluations of water and red cell interactions with glycocalyx components, the glycocalyx is now best understood as fibrous networks with varying composition within a three-dimensional structure: a quasi-periodic inner matrix associated with the endothelial cell membrane that forms the permeability barrier, and a more porous outer region whose composition varies with distance from the endothelial membrane and which determines red cell hemodynamics. This chapter explains why the common concept that the changes in the thickness of the glycocalyx layers extending more than 0.5 microns from the endothelial surface can be used as biomarkers of glycocalyx function must be carefully evaluated. It provides a detailed analysis of two modern approaches to measure glycocalyx function in clinical settings: (1) measurement of glycocalyx volume as a difference between the distribution volumes of red cells and macromolecular tracers; and (2) direct visualization of changes in the penetration of red cells into the cell-free layer at the walls of sublingual microvessels. Method 1 overestimates glycocalyx volume because it assumes tracer concentrations in the glycocalyx and plasma are the same, and also assumes large vessel hematocrit provides an unbiased measure of plasma volume in the whole circulation. Method 2 appears to characterize some microvascular dysfunction, but ignores differences in porosity between inner and outer layers of the glycocalyx, and the role of changes in red cell mechanics, independent of the glycocalyx, to influence penetration into the cell-free layer. By identifying these limitations, the chapter should provide a basis to reevaluate ideas about the distribution of infused fluids within and across the glycocalyx during perioperative fluid therapy, encourage further improvements of these and similar methods, and enable comparisons with analytical approaches to measure the accumulation of specific glycocalyx components in plasma and urine as biomarkers of glycocalyx function. On the basis of the principles outlined in this chapter, the final summary addresses some of the frequently asked questions about glycocalyx function and fluid balance that are likely to arise during perioperative fluid therapy.

Keywords

Glycocalyx Glycocalyx structure-function Glycocalyx volume 3D glycocalyx reconstruction Sidestream dark field imaging Revised Starling Principle Glycocalyx composition Electron microscopy of glycocalyx 

Notes

Acknowledgment

KPA would like to acknowledge the British Heart Foundation (PG/15/37/31438) and the Bizkaia Talent Fellowship Scheme (AYD-000-256).

References

  1. 1.
    Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng. 2012;40(4):828–39.CrossRefPubMedGoogle Scholar
  2. 2.
    Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, et al. A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol. 2015;308(9):F956–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440(5):653–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tarbell JM, Simon SI, Curry FR. Mechanosensing at the vascular interface. Annu Rev Biomed Eng. 2014;16:505–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van den Berg BM, Nieuwdorp M, Stroes ES, Vink H. Glycocalyx and endothelial (dys) function: from mice to men. Pharmacol Rep. 2006;58(Suppl):75–80.PubMedGoogle Scholar
  7. 7.
    Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med. 2007;17(3):101–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Broekhuizen LN, Mooij HL, Kastelein JJ, Stroes ES, Vink H, Nieuwdorp M. Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease. Curr Opin Lipidol. 2009;20(1):57–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Lipowsky HH. Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discov Today Dis Models. 2011;8(1):57–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    VanTeeffelen JW, Brands J, Vink H. Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc Res. 2010;87(2):311–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Woodcock TE, Woodcock TM. Revised starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Woodcock TM, Woodcock TE. Revised starling equation predicts pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med. 2012;40(9):2741–2; author reply 2742.CrossRefPubMedGoogle Scholar
  16. 16.
    Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, et al. Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol. 2014;15:24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol. 2001;136(3):239–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med. 2006;259(4):339–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Kokenyesi R, Bernfield M. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem. 1994;269(16):12304–9.PubMedGoogle Scholar
  21. 21.
    Simons M, Horowitz A. Syndecan-4-mediated signalling. Cell Signal. 2001;13(12):855–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Yoneda A, Couchman JR. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol. 2003;22(1):25–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S. Novel aspects of glypican glycobiology. Cell Molecul Life Sci. 2004;61(9):1016–24.CrossRefGoogle Scholar
  24. 24.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.PubMedGoogle Scholar
  25. 25.
    Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol. 1999;277(2 Pt 2):H508–14.PubMedGoogle Scholar
  26. 26.
    Singleton PA, Dudek SM, Ma SF, Garcia JG. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation. Novel role for hyaluronan and cd44 receptor family. J Biol Chem. 2006;281(45):34381–93.CrossRefPubMedGoogle Scholar
  27. 27.
    Gallagher J. Fell-muir lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol. 2015;96(4):203–31.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 2008;104(3):845–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.CrossRefPubMedGoogle Scholar
  30. 30.
    Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55(2):480–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Henry CB, Duling BR. Tnf-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol. 2000;279(6):H2815–23.PubMedGoogle Scholar
  32. 32.
    Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol. 2012;23(11):1900–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schmidt EP, Li G, Li L, Fu L, Yang Y, Overdier KH, et al. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem. 2014;289(12):8194–202.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Curry FR, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol. 2013;207(4):628–49.CrossRefGoogle Scholar
  35. 35.
    Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53(12):2646–55.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zeng Y, Adamson RH, Curry FR, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol. 2014;306(3):H363–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by hdl-associated apolipoprotein m. Proc Natl Acad Sci U S A. 2011;108(23):9613–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res. 2013;90:80–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang L, Zeng M, Fan J, Tarbell JM, Curry FE, Fu BM. Sphingosine-1-phosphate maintains normal vascular permeability by preserving endothelial surface glycocalyx in intact microvessels. Microcirculation. 2016;25.Google Scholar
  40. 40.
    Selim S, Sunkara M, Salous AK, Leung SW, Berdyshev EV, Bailey A, et al. Plasma levels of sphingosine 1-phosphate are strongly correlated with haematocrit, but variably restored by red blood cell transfusions. Clin Sci. 2011;121(12):565–72.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen W, Oberwinkler H, Werner F, Gassner B, Nakagawa H, Feil R, et al. Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial ca2+ and permeability response to histamine involves cgmp-dependent protein kinase i and trpc6 channels. Arterioscler Thromb Vasc Biol. 2013;33(9):2121–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Kuhn M. Endothelial actions of atrial and b-type natriuretic peptides. Br J Pharmacol. 2012;166(2):522–31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Morikis VARC, Jiang Y, Heinrich V, Curry FR, Simon SI. Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force. Biorheology. 2015;52(5–6):447–63.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Landis EM, Pappenheimer JR. Exchange of substances through the capillary walls. Handbook of physiology circulation. Washington, DC: American Physiological Society; 1963. p. 961–1034.Google Scholar
  46. 46.
    Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951;167(1):13–46.PubMedGoogle Scholar
  47. 47.
    Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;25(6):1773–83.PubMedGoogle Scholar
  48. 48.
    Crone C, Levitt DG. Capillary permeability to small molecules. In: Renkin EM, Michel CC, editors. Handbook of physiology section 2: the cardiovascular system. Bethesda: American Physiological Society; 1984. p. 411–66.Google Scholar
  49. 49.
    Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC, editors. Handbook of physiology section 2: the cardiovascular system. Bethesda: American Physiological Society; 1984. p. 309–74.Google Scholar
  50. 50.
    Michel CC. Fluid movements through capillary walls. In: Renkin EM, Michel CC, editors. Handbook of physiology section 2: the cardiovascular system. Bethesda: American Physiological Society; 1984. p. 375–409.Google Scholar
  51. 51.
    Renkin EM. Control of microcirculation and blood-tissue exchange. In: Renkin EM, Michel CC, editors. Handbook of physiology section 2: the cardiovascular system. Bethesda: American Physiological Society; 1984. p. 627–87.Google Scholar
  52. 52.
    Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res. 1980;20(1):96–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Michel CC. Capillary permeability and how it may change. J Physiol. 1988;404:1–29.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Desjardins C, Duling BR. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol. 1990;258(3 Pt 2):H647–54.PubMedGoogle Scholar
  55. 55.
    Duling BR, Desjardins C. Capillary hematocrit-what does it mean? News Physiol Sci. 1987;2:66–9.Google Scholar
  56. 56.
    Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. 1996;79(3):581–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Gao L, Lipowsky HH. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc Res. 2010;80(3):394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res. 1997;53(1):1–13.CrossRefPubMedGoogle Scholar
  59. 59.
    Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, et al. Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: Evidence for a common filtering mechanism? Biophys J. 2011;101(5):1046–56.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, et al. 3d reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation. 2012;19(4):343–51.CrossRefPubMedGoogle Scholar
  61. 61.
    Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557(Pt 3):889–907.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hu X, Weinbaum S. A new view of starling’s hypothesis at the microstructural level. Microvasc Res. 1999;58(3):281–304.CrossRefPubMedGoogle Scholar
  63. 63.
    Levick JR, Michel CC. Microvascular fluid exchange and the revised starling principle. Cardiovasc Res. 2010;87(2):198–210.CrossRefPubMedGoogle Scholar
  64. 64.
    Feng J, Weinbaum S. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J Fluid Mech. 2000;422:281–317.CrossRefGoogle Scholar
  65. 65.
    Secomb TW, Hsu R, Pries AR. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol. 2001;281(2):H629–36.PubMedGoogle Scholar
  66. 66.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A. 2003;100(13):7988–95.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Weinbaum S, Curry FE. Modelling the structural pathways for transcapillary exchange. Symp Soc Exp Biol. 1995;49:323–45.PubMedGoogle Scholar
  68. 68.
    Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5(10):1209–12.CrossRefPubMedGoogle Scholar
  69. 69.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36(11):1813–25.CrossRefPubMedGoogle Scholar
  70. 70.
    Dane MJ, Khairoun M, Lee DH, van den Berg BM, Eskens BJ, Boels MG, et al. Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol. 2014;9(4):698–704.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mulders TA, Nieuwdorp M, Stroes ES, Vink H, Pinto-Sietsma SJ. Non-invasive assessment of microvascular dysfunction in families with premature coronary artery disease. Int J Cardiol. 2013;168(5):5026–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Donati A, Damiani E, Domizi R, Romano R, Adrario E, Pelaia P, et al. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res. 2013;90:86–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Amraoui F, Olde Engberink RH, van Gorp J, Ramdani A, Vogt L, van den Born BJ. Microvascular glycocalyx dimension estimated by automated sdf imaging is not related to cardiovascular disease. Microcirculation. 2014;21(6):499–505.CrossRefPubMedGoogle Scholar
  74. 74.
    Fahraeus R. The suspension stability of the blood. Physiol Rev. 1929;9(2):241–74.Google Scholar
  75. 75.
    Fahraeus R, Lindqvist T. Viscosity of blood in narrow capillary tubes. Am J Physiol. 1931;96:562–8.Google Scholar
  76. 76.
    Fedosov DA, Caswell B, Popel AS, Karniadakis GE. Blood flow and cell-free layer in microvessels. Microcirculation. 2010;17(8):615–28.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol. 2005;289(6):H2657–64.CrossRefPubMedGoogle Scholar
  78. 78.
    Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.PubMedGoogle Scholar
  79. 79.
    Ogston AG, Phelps CF. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J. 1961;78:827–33.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–60.CrossRefPubMedGoogle Scholar
  81. 81.
    Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55(4):1127–32.CrossRefPubMedGoogle Scholar
  82. 82.
    Michel CC, Curry FR. Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation. 2009;16(3):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Jacob M, Conzen P, Finsterer U, Krafft A, Becker BF, Rehm M. Technical and physiological background of plasma volume measurement with indocyanine green: a clarification of misunderstandings. J Appl Physiol. 2007;102(3):1235–42.CrossRefPubMedGoogle Scholar
  84. 84.
    Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95(4):849–56.CrossRefPubMedGoogle Scholar
  85. 85.
    Vink H, Duling BR. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol. 2000;278(1):H285–9.PubMedGoogle Scholar
  86. 86.
    Lawson HC. The volume of blood-a critical examination of the methods for its measurement. In: Hamilton WF, Dow P, editors. Handbook of physiology, sect. 2, vol. 1. Washington, DC: American Physiological Society; 1962. p. 23–49.Google Scholar
  87. 87.
    Goresky CA, Rose CP. Blood-tissue exchange in liver and heart: the influence of heterogeneity of capillary transit times. Fed Proc. 1977;36(12):2629–34.PubMedGoogle Scholar
  88. 88.
    van den Berg BM, Spaan JA, Vink H. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch. 2009;457(6):1199–206.CrossRefPubMedGoogle Scholar
  89. 89.
    Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res. 2007;44(2):87–98.CrossRefPubMedGoogle Scholar
  90. 90.
    van Haaren PM, VanBavel E, Vink H, Spaan JA. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Heart Circ Physiol. 2003;285(6):H2848–56.CrossRefPubMedGoogle Scholar
  91. 91.
    Muller-Reichert T, Verkade P. Introduction to correlative light and electron microscopy. Methods Cell Biol. 2012;111:xvii–xix.Google Scholar
  92. 92.
    Muller-Reichert T, Verkade P. Preface. Correlative light and electron microscopy ii. Methods Cell Biol. 2014;124:xvii–xviii.Google Scholar
  93. 93.
    Bancroft JD, Gamble M. Theory and practice of histological techniques. Philadelphia: Churchill Livingstone/Elsevier; 2008.Google Scholar
  94. 94.
    Scott JE, Dorling J. Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochem Histochem Histochim. 1965;5(3):221–33.Google Scholar
  95. 95.
    Wagner RC, Chen SC. Ultrastructural distribution of terbium across capillary endothelium: detection by electron spectroscopic imaging and electron energy loss spectroscopy. J Histochem Cytochem. 1990;38(2):275–82.CrossRefPubMedGoogle Scholar
  96. 96.
    Hegermann J, Lunsdorf H, Ochs M, Haller H. Visualization of the glomerular endothelial glycocalyx by electron microscopy using cationic colloidal thorium dioxide. Histochem Cell Biol. 2016;145(1):41–51.CrossRefPubMedGoogle Scholar
  97. 97.
    Betteridge KB, Neal CR, Bates DO, Salmon AHJ. Endothelial glycocalyx-surface layer depth measurements in single perfused microvessels by confocal microscopy in vivo and subsequent electron microscopy. Microcirculation. 2013;20:64.Google Scholar
  98. 98.
    Ebong EE, Macaluso FP, Spray DC, Tarbell JM. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol. 2011;31(8):1908–15.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123(7):2803–15.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • FitzRoy E. Curry
    • 1
    Email author
  • Kenton P. Arkill
    • 2
    • 3
  • C. Charles Michel
    • 4
  1. 1.Department of Physiology and Membrane Biology, and Biomedical EngineeringSchool of Medicine, University of California, DavisDavisUSA
  2. 2.School of MedicineUniversity of NottinghamNottinghamUK
  3. 3.Biofisika Institute (CSIC UPV/EHU) and Research Centre for Experimental Marine Biology and BiotechnologyUniversity of the Basque CountryBilbaoSpain
  4. 4.Department of BioengineeringImperial CollegeLondonUK

Personalised recommendations