Skip to main content

Structures and Analysis of Carotenoid Molecules

  • Chapter
  • First Online:
Carotenoids in Nature

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achir N, Randrianatoandro VA, Bohuon P, Laffargue A, Avallone S (2010) Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol 112:349–361

    CAS  Google Scholar 

  • Akhtar MH, Bryan M (2008) Extraction and quantification of major carotenoids in processed foods and supplements by liquid chromatography. Food Chem 111:255–261

    Article  CAS  Google Scholar 

  • Aman R, Biehl J, Carle R, Conrad J, Beifuss U, Schieber A (2005) Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chem 92:753–763

    Article  CAS  Google Scholar 

  • Amorim-Carrilho KT, Cepeda A, Fente C, Regal P (2014) Review of methods for analysis of carotenoids. Trends Anal Chem 56:49–73

    Article  CAS  Google Scholar 

  • Atienza SG, Avila CM, Ramirez MC, Martin A (2005) Application of near infrared reflectance spectroscopy to the determination of carotenoid content in tritordum for breeding purposes. Aust J Agric Res 56:85–89

    Article  CAS  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2004) Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. J Food Compos Anal 17:385–396

    Article  CAS  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2007) Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J Agric Food Chem 55:4027–4033

    Article  CAS  PubMed  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2009) Qualitative and quantitative differences in the carotenoid composition of yellow and red peppers determined by HPLC-DAD-MS. J Sep Sci 32:3652–3658

    Google Scholar 

  • Baranska M, Baranski R, Schulz H, Nothnagel T (2006a) Tissue-specific accumulation of carotenoids in carrot roots. Planta 224:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Baranska M, Schütze W, Schulz H (2006b) Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem 78:8456–8461

    Article  CAS  PubMed  Google Scholar 

  • Barba AIO, Hurtado MC, Mata MCS, Ruiz VF, de Tejada MLS (2006) Application of UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chem 95:328–336

    Article  CAS  Google Scholar 

  • Barth MM, Zhou C, Kute KM, Rosenthal GA (1995) Determination of optimum conditions for supercritical fluid extraction of carotenoids from carrot (Daucus carota L.) tissue. J Agric Food Chem 43:2876–2878

    Article  CAS  Google Scholar 

  • Berardo N, Brenna OV, Amato A, Valoti P, Pisacane V, Motto M (2004) Carotenoids concentration among maize genotypes measured by near infrared reflectance spectroscopy (NIRS). Innov Food Sci Emerg Technol 5:393–398

    Article  CAS  Google Scholar 

  • Berger TA, Berger BK (2013) Separation of natural food pigments in saponified and unsaponified paprika oleoresin by ultra high performance supercritical fluid chromatography (UHPSFC). Chromatographia 76:591–601

    Google Scholar 

  • Bhosale P, Ermakov IV, Ermakova MR, Gellermann W, Bernstein PS (2004) Resonance Raman quantification of nutritionally important carotenoids in fruits, vegetables, and their juices in comparison to high-pressure liquid chromatography analysis. J Agric Food Chem 52:3281–3285

    Article  CAS  PubMed  Google Scholar 

  • Bicanic DD (2011) On the photoacoustic, photothermal and colorimetric quantification of carotenoids and other phytonutrients in some foods: A review. J Mol Struct 993:9–14

    Article  CAS  Google Scholar 

  • Bicanic D, Dimitrovski D, Luterotti S, Markovic K, van Twisk C, Buijnsters JG, Dóka O (2010) Correlation of trans-lycopene measurements by the HPLC method with the optothermal and photoacoustic signals and the color readings of fresh tomato homogenates. Food Biophys 5:24–33

    Article  PubMed  Google Scholar 

  • Boboyo-Gil D, Dominguez-Valhondo D, García-Parra JJ, González-Gómez D (2012) UHPLC as a suitable methodology for the analysis of carotenoids in food matrix. Eur Food Res Technol 235:1055–1061

    Article  CAS  Google Scholar 

  • Bonierbale M, Grüneberg W, Amoros W, Burgos G, Salas E, Porras E, zum Felde T (2009) Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J Food Comp Anal 22:509–516

    Article  CAS  Google Scholar 

  • Breithaupt DE (2004) Simultaneous HPLC determination of carotenoids used as food coloring additives: Applicability of accelerated solvent extraction. Food Chem 86:449–456

    Article  CAS  Google Scholar 

  • Breithaupt DE, Wirt U, Bamedi A (2002) Differentiation between lutein monester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. J Agric Food Chem 50:66–70

    Article  CAS  PubMed  Google Scholar 

  • Brenna OV, Berardo N (2004) Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize. J Agric Food Chem 52:5577–5582

    Article  CAS  PubMed  Google Scholar 

  • Britton G (1991) Carotenoids. Methods Plant Biochem 7:473–518

    CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: spectroscopy, vol 1B. Birkhäuser Verlag, Basel, pp 13–63

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoid handbook. Birkhaüser Verlag, Basel

    Book  Google Scholar 

  • Chauveau-Duriot B, Doreau M, Nozière P, Graulet B (2010) Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method. Anal Bioanal Chem 397:777–790

    Article  CAS  PubMed  Google Scholar 

  • Chávez AL, Ceballos H, Rodriguez-Amaya DB, Pérez JC, Sánchez T, Calle F, Morante N (2008) Sampling variation for carotenoids and dry matter contents in cassava roots. J Root Crops 34:43–49

    Google Scholar 

  • Chen S, Kord A (2009) Theoretical and experimental comparison of mobile phase consumption between ultra-high-performance liquid chromatography and high performance liquid chromatography. J Chromatogr A 1216:6204–6209

    Google Scholar 

  • Chen JP, Tai C, Chen BH (2004) Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J Chromatogr A 1054:261–268

    Article  CAS  PubMed  Google Scholar 

  • Clément A, Dorais M, Vernon M (2008) Nondestructive measurement of fresh tomato lycopene content and other physicochemical characteristics using visible-NIR spectroscopy. J Agric Food Chem 56:9813–9818

    Article  PubMed  CAS  Google Scholar 

  • Cortés C, Esteve MJ, Frígola A, Torregrosa F (2004) Identification and quantification of carotenoids including geometrical isomers in fruit and vegetable juices by liquid chromatography and ultraviolet-diode array detection. J Agric Food Chem 52:2203–2212

    Article  PubMed  CAS  Google Scholar 

  • Craft NE, Soares JH Jr (1992) Relative solubility stability, and absorptivity of lutein and β-carotene in organic solvents. J Agric Food Chem 40:431–434

    Article  CAS  Google Scholar 

  • Craft NE, Wise SA, Soares JH Jr (1992) Optimization of an isocratic high-performance liquid chromatographic separation of carotenoids. J Chromatogr 589:171–176

    Article  CAS  Google Scholar 

  • Craft NE, Wise SA, Soares JH Jr (1993) Individual carotenoid content of SRM 1548 total diet and influence of storage temperature, lyophilization, and irradiation on dietary carotenoids. J Agric Food Chem 41:208–213

    Google Scholar 

  • Dachtler M, Glaser T, Kohler K, Albert K (2001) Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in the retina. Anal Chem 73:667–674

    Article  CAS  PubMed  Google Scholar 

  • Darrigues A, Schwartz SJ, Francis DM (2008) Optimizing sampling of tomato fruit for carotenoid content with application to assessing the impact of ripening disorders. J Agric Food Chem 56:483–487

    Article  CAS  PubMed  Google Scholar 

  • Darwin ME, Gersonde I, Albrecht HA, Sterry W, Lademann J (2007) Resonance Raman spectroscopy for the detection of carotenoids in foodstuffs. Influence of the nutrition on the antioxidative potential of the skin. Laser Phys Lett 4:452–456

    Article  CAS  Google Scholar 

  • Davey MW, Keulemans J, Swennen R (2006) Methods for the efficient quantification of fruit provitamin A contents. J Chromatogr A 1136:176–184

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Mellidou I, Keulemans W (2009a) Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa. J Chromatogr A 1216:5759–5762

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Saeys W, Hof E, Ramon H, Swennen RL, Keulemans J (2009b) Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J Agric Food Chem 57:1742–1751

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Stals E, Ngoh-Newilah G, Tomekpe K, Lusty C, Markham R, Swennen R, Keulemans J (2007) Sampling strategies and variability in fruit pulp micronutrient contents of West and Central African bananas and plantains (Musa species). J Agric Food Chem 55:2633–2644

    Article  CAS  PubMed  Google Scholar 

  • de Nardo T, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-Saona LE (2009) Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J Agric Food Chem 57:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira GPR, Rodriguez-Amaya DB (2007) Processed and prepared products of corn as sources of lutein and zeaxanthin. Compositional variation in the food chain. J Food Sci 72:S79–S85

    Article  CAS  Google Scholar 

  • de Sá MC, Rodriguez-Amaya DB (2004) Optimization of HPLC quantification of carotenoids in cooked green vegetables – comparison of analytical and calculated data. J Food Compos Anal 17:37–51

    Article  CAS  Google Scholar 

  • Dias MG, Camões MFGFC, Oliveira L (2008) Uncertainty estimation and in house method validation of HPLC analysis of carotenoids for food composition data production. Food Chem 109:815–824

    Article  CAS  PubMed  Google Scholar 

  • Dugo P, Herrero M, Giuffrida D, Kumm T, Dugo G, Mondello L (2008) Application of comprehensive two-dimensional liquid chromatography to elucidate the native carotenoid composition in red orange essential oil. J Agric Food Chem 56:3478–3485

    Article  CAS  PubMed  Google Scholar 

  • Enzell CR, Back S (1995) Mass spectrometry. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: spectroscopy, vol 1B. Birkhäuser Verlag, Basel, pp 261–320

    Google Scholar 

  • Eugster CH (1995) Chemical derivatization: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: isolation and analysis, vol 1A. Birkhäuser Verlag, Basel, pp 71–80

    Google Scholar 

  • Felicissimo MP, Bittencourt C, Houssiau L, Pireaux J-J (2004) Time-of-flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy analyses of Bixa Orellana seeds. J Agric Food Chem 52:1810–1814

    Google Scholar 

  • Frenich AG, Torres MEH, Vega AB, Vidal JLM, Bolaños PP (2005) Determination of ascorbic acid and carotenoids in food commodities by liquid chromatography with mass spectrometry detection. J Agric Food Chem 53:7371–7376

    Article  CAS  PubMed  Google Scholar 

  • GaÅ‚uszka A, Migaszewski Z, NamieÅ›nik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 50:78–84

    Article  CAS  Google Scholar 

  • Gama JJT, de Sylos CM (2007) Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chem 100:1686–1690

    Article  CAS  Google Scholar 

  • Gentili A, Caretti F (2011) Evaluation of a method based on liquid chromatography-diode array detector-tandem mass spectrometry for a rapid and comprehensive characterization of the fat-soluble vitamin and carotenoid profile of selected plant foods. J Chromatogr A 1218:684–697

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida D, Salvo F, Salvo A, la Pera L, Dugo G (2007) Pigments composition in monovarietal virgin olive oils from various Sicilian olive varieties. Food Chem 101:833–837

    Article  CAS  Google Scholar 

  • Glaser T, Lienau A, Zeeb D, Krucker M, Dachtler M, Albert K (2003) Qualitative and quantitative determination of carotenoid stereoisomers in a variety of spinach samples by use of MSPD before HPLC-UV, HPLC-APCI-MS, and HPLC-NMR on-line coupling. Chromatographia 57:S19–S25

    Article  Google Scholar 

  • Godoy HT, Rodriguez-Amaya DB (1994) Occurrence of cis isomers of provitamin A in Brazilian fruits. J Agric Food Chem 42:1306–1313

    Article  CAS  Google Scholar 

  • Godoy HT, Rodriguez-Amaya DB (1998) Occurrence of cis isomers of provitamins A in Brazilian vegetables. J Agric Food Chem 46:3081–3086

    Article  CAS  Google Scholar 

  • Gómez-Prieto MS, Caja MM, Herraiz M, Santa-María G (2003) Supercritical fluid extraction of all-trans-lycopene from tomato. J Agric Food Chem 51:3–7

    Article  PubMed  CAS  Google Scholar 

  • Gonzalvez AG, Martin D, Slowing K, Ureña AG (2014) Insights into the β-carotene distribution in carrot roots. Food Struct 2:61–65

    Article  Google Scholar 

  • Griffiths DW, Dale MFB, Morris WL, Ramsay G (2007) Effects of season and postharvest storage on the carotenoid content of Solanum phureja potato tubers. J Agric Food Chem 55:379–385

    Article  CAS  PubMed  Google Scholar 

  • Gross J (1987) Pigments in fruits. Academic, London

    Google Scholar 

  • Guzman I, Yousef GG, Brown AF (2012) Simultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in Brassica vegetables. J Agric Food Chem 60:7238–7244

    Article  CAS  PubMed  Google Scholar 

  • Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111

    Article  CAS  Google Scholar 

  • Herrero-Martínez JM, Eeltink S, Schoenmakers PJ, Kok WT, Ramis-Ramos G (2006) Determination of major carotenoids in vegetables by capillary electrochromatography. J Sep Sci 29:660–665

    Article  PubMed  CAS  Google Scholar 

  • Hiranvarachat B, Devahastin S, Chiewchan N, Vijaya Raghavan GS (2013) Structural modification by different pretreatment methods to enhance microwave-assisted extraction of β-carotene from carrots. J Food Eng 115:190–197

    Article  CAS  Google Scholar 

  • Humphries JM, Khachick F (2003) Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat and pasta products. J Agric Food Chem 51:1322–1327

    Article  CAS  PubMed  Google Scholar 

  • Hung PV, Hatcher DW (2011) Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum wheat: Influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN). Food Chem 125:1510–1516

    Article  CAS  Google Scholar 

  • Isler O, Rüegg R, Schweiter U (1967) Carotenoids as food colorants. Pure Appl Chem 14:245–263

    Article  CAS  PubMed  Google Scholar 

  • IUPAC Commission of Nomenclature of Organic Chemistry, IUPAC-IUB Commission on Biochemical Nomenclature (1975) Nomenclature of carotenoids. Pure Appl Chem 41:405–431

    Google Scholar 

  • Kaulmann A, Jonville M-C, Schneider Y-J, Hoffman L, Bohn T (2014) Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chem 155:240–250

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Beecher GR, Whitaker NF (1986) Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J Agric Food Chem 34:603–616

    Article  CAS  Google Scholar 

  • Kimura M, Kobori CN, Rodriguez-Amaya DB, Nestel P (2007) Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chem 100:1734–1746

    Article  CAS  Google Scholar 

  • Kimura M, Rodriguez-Amaya DB (2002) A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chem 78:389–398

    Article  CAS  Google Scholar 

  • Kimura M, Rodriguez-Amaya DB, Godoy HT (1990) Assessment of the saponification step in the quantitative determination of carotenoids and provitamin A. Food Chem 35:187–195

    Article  CAS  Google Scholar 

  • Kiss GAC, Forgács E, Cserháti T, Mota T, Morais H, Ramos A (2000) Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. J Chromatogr A 889:41–49

    Google Scholar 

  • Kobori CN, Rodriguez-Amaya DB (2008) Uncultivated Brazilian green leaves are richer sources of carotenoids than are commercially produced leafy vegetables. Food Nutr Bull 29:333–341

    Article  Google Scholar 

  • Kobori CN, Rodriguez-Amaya DB (2013) Intralaboratory assessment of analysts’ performance in carotenoid analysis using certified reference material. Rev Inst Adolfo Lutz 72(2):1–10

    Google Scholar 

  • Konings EJM, Roomans HHS (1997) Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit. Food Chem 59:599–603

    Article  CAS  Google Scholar 

  • Lessin WJ, Catigani GL, Schwartz SJ (1997) Quantification of cis-trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J Agric Food Chem 45:3728–3732

    Article  CAS  Google Scholar 

  • Li H, Deng Z, Liu R, Loewen S, Tsao R (2012) Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines. Food Chem 132:508–517

    Article  CAS  PubMed  Google Scholar 

  • Li H, Deng Z, Liu R, Loewen S, Tsao R (2013) Carotenoid composition of coloured tomato cultivars and contribution to antioxidant activities and protection against H2O2-induced cell death in H9c2. Food Chem 136:878–888

    Article  CAS  PubMed  Google Scholar 

  • Liaan-Jensen S (2004) Basic carotenoid chemistry. In: Krinsky NI, Mayne ST, Sies H (eds) Carotenoids in health and disease. Marcel Dekker, Inc, New York, pp 1–30

    Chapter  Google Scholar 

  • Lianfu Z, Liu Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Chen BH (2003) Determination of carotenoids in tomato juice by liquid chromatography. J Chromatogr A 1012:103–109

    Google Scholar 

  • Luterotti S, Bicanic D, Kljak K, Grbesa D, Martinez ESM, Spruijt R (2011) Assaying total carotenoids in flours of corn and sweetpotato by laser photoacoustic spectroscopy. Food Biophys 6:12–19

    Article  PubMed  Google Scholar 

  • Marsili R, Callahan D (1993) Comparison of a liquid solvent extraction technique and supercritical fluid extraction for the determination of α- and β-carotene in vegetables. J Chromatogr Sci 31:422–428

    Google Scholar 

  • Martínez-Valdivieso D, Font R, Blanco-Díaz MT, Moreno-Rojas JM, Gómez P, Alonso-Moraga A, del Río-Celestino M (2014) Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Comp Elect Agric 108:71–79

    Article  Google Scholar 

  • Marx M, Schieber A, Carle R (2000) Quantitative determination of carotene stereoisomers in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem 70:403–408

    Article  CAS  Google Scholar 

  • Mathiasson L, Turner C, Berg H, Dahlberg L, Theobald A, Anklam E, Ginn R, Sharman M, Ulberth F, Gabernig R (2002) Development of methods for the determination of vitamins A, E and β-carotene in processed food based on supercritical fluid extraction: A collaborative study. Food Addit Contam 19:632–646

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T (2007) Quantication of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J Agric Food Chem 55:2356–2368

    Article  CAS  PubMed  Google Scholar 

  • Mellado-Ortega E, Hornero-Méndez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (x Tritordeum Ascherson et Graebner) grains: Evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    Article  CAS  PubMed  Google Scholar 

  • Niizu PY, Rodriguez-Amaya DB (2005) The flowers and leaves of Tropaeolum majus as rich sources of lutein. J Food Sci 70:S605–S609

    Article  CAS  Google Scholar 

  • O’Neil CA, Schwartz SJ (1995) Photoisomerization of β-carotene by photosensitization with chlorophyll derivatives as sensitizers. J Agric Food Chem 43:631–635

    Article  Google Scholar 

  • Pedro AMK, Ferreira MMC (2005) Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal Chem 77:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Periago MJ, Rincón F, Agüera MD, Ros G (2004) Mixture approach for optimizing lycopene extraction from tomato and tomato products. J Agric Food Chem 52:5796–5802

    Article  CAS  PubMed  Google Scholar 

  • Periago MJ, Rincón F, Jacob K, García-Alonso J, Ros G (2007) Detection of key factors in the extraction and quantification of lycopene from tomato and tomato products. J Agric Food Chem 55:8825–8829

    Article  CAS  PubMed  Google Scholar 

  • Pop RM, Weesepoel Y, Socaciu C, Pintea A, Vincken J-P, Gruppen H (2014) Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem 147:1–9

    Google Scholar 

  • Pott I, Breithhaupt DE, Carle R (2003) Detection of unusual carotenoid esters in fresh mango (Mangifera indica L. cv. ‘Kent’). Phytochemistry 64:825–829

    Article  CAS  PubMed  Google Scholar 

  • Prasain JK, Moore R, Hurst JS, Barnes S, van Kuijk FJGM (2005) Electrospray tandem mass spectrometric analysis of zeaxanthin and its oxidation products. J Mass Spectrom 40:916–923

    Article  CAS  PubMed  Google Scholar 

  • Riso P, Porrini M (1997) Determination of carotenoids in vegetable foods and plasma. Int J Vitam Nutr Res 67:47–54

    Google Scholar 

  • Rivera S, Canela R (2012) Influence of sample processing on the analysis of carotenoids in maize. Molecules 17:11255–11268

    Article  CAS  PubMed  Google Scholar 

  • Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J ChromatrogrA 1224:1–10

    Article  CAS  Google Scholar 

  • Rivera SM, Vilaró F, Zhu C, Bai C, Ferré G, Christou P, Canela-Garayoa R (2013) Fast quantitative method for the analysis of carotenoids in transgenic maize. J Agric Food Chem 61:5279–5285

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Amaya DB (1999) A guide to carotenoid analysis in foods. International Life Sciences Institute (ILSI) Press, Washington DC

    Google Scholar 

  • Rodriguez-Amaya DB (2010) Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids – A review. J Food Compos Anal 23:726–740

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. J Food Compos Anal 21:445–463

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M, Kobori CN, Nestel P (2012) International interlaboratory evaluation of laboratory’s proficiency for carotenoid analysis in sweetpotato and cassava. Paper presented at the 16th World Congress of Food Science and Technology, Foz do Iguaçu, Brazil

    Google Scholar 

  • Rodriguez-Amaya DB, Kimura M, Godoy HT, Arima HK (1988) Assessment of provitamin A determination by open column chromatography/visible absorption spectrophotometry. J Chromatogr Sci 26:624–629

    Google Scholar 

  • Rubio-Diaz DE, Francis DM, Rodriguez-Saona LE (2011) External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. J Food Compos Anal 24:121–126

    Article  CAS  Google Scholar 

  • Sánchez T, Ceballos H, Dufour D, Ortiz D, Morante N, Calle F, Felde TZ, Domínguez M, Davrieux F (2014) Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chem 151:444–451

    Article  PubMed  CAS  Google Scholar 

  • Sander LC, Sharpless KE, Craft NE, Wise SA (1994) Development of engineered stationary phases for the separation of carotenoid isomers. Anal Chem 66:1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Sander LC, Sharpless KE, Pursch M (2000) C30 stationary phases for the analysis of food by liquid chromatography. J Chromatogr A 880:189–202

    Article  CAS  PubMed  Google Scholar 

  • Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen Jensen S, Pfander H (eds) Carotenoids, vol 1A: isolation and analysis. Birkhaüser Verlag, Basel, pp 81–108

    Google Scholar 

  • Schüep W, Schierle J (1997) Determination of β-carotene in commercial foods: Interlaboratory study. J AOAC Int 80:1057–1064

    Google Scholar 

  • Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221

    Article  CAS  PubMed  Google Scholar 

  • Scott KJ, Finglas PM, Seale R, Hart DJ, de Froidmont-Görtz I (1996) Interlaboratory studies of HPLC procedures for the analysis of carotenoids in foods. Food Chem 57:85–90

    Article  CAS  Google Scholar 

  • Sharpless KE, Arce-Osuna M, Thomas JB, Gill LM (1999) Value assignment of retinol, retinyl palmitate, tocopherol, and carotenoid concentrations in standard reference material 2383 (baby food composite). J AOAC Int 82:288–296

    CAS  PubMed  Google Scholar 

  • Slavin M, Cheng Z, Luther M, Kenworthy W, Yu L (2009) Antioxidant properties and phenolic, isoflavone, tocopherol and carotenoid composition of Maryland grown soybean lines with altered fatty acid profiles. Food Chem 114:20–27

    Article  CAS  Google Scholar 

  • Stinco CM, Rodríguez-Pulido FJ, Escudero-Gilete ML, Gordillo B, Vicario IM, Meléndez-Martínez AJ (2013) Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res Int 50:111–120

    Article  CAS  Google Scholar 

  • Su Q, Rowley KG, Balazs NDH (2002) Carotenoids: separation methods applicable to biological samples. J Chromatogr B 781:393–418

    Article  CAS  Google Scholar 

  • Sun H, Ge X, Lv Y, Wang A (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A 1237:1–23

    Google Scholar 

  • Sun T, Xu Z, Godber JS (2006) Ultrasound assisted extraction in quantifying lutein from chicken liver using high-performance liquid chromatography. J Chromatogr B 830:158–160

    Article  CAS  Google Scholar 

  • Taungbodhitham AK, Jones GP, Wahlqvist ML, Briggs DR (1998) Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chem 63:577–584

    Article  CAS  Google Scholar 

  • Tavares CA, Rodriguez-Amaya DB (1994) Carotenoid composition of Brazilian tomatoes and tomato products. Lebensm-Wissen Technol 27:219–224

    Article  CAS  Google Scholar 

  • Tiziani S, Schwartz SJ, Vodovotz Y (2006) Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. J Agric Food Chem 54:6094–6100

    Article  CAS  PubMed  Google Scholar 

  • Tonucci LH, Holden JM, Beecher GR, Khachik F, Davis CS, Mulokozi G (1995) Carotenoid content of thermally processed tomato-based food products. J Agric Food Chem 43:579–586

    Article  CAS  Google Scholar 

  • Updike AA, Schwartz SJ (2003) Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. J Agric Food Chem 51:6184–6190

    Article  CAS  PubMed  Google Scholar 

  • van Breemen RB (1995) Electrospray liquid chromatography-mass spectrometry of carotenoids. Anal Chem 67:2004–2009

    Article  Google Scholar 

  • van Breemen RB (1997) Liquid chromatography/mass spectrometry of carotenoids. Pure Appl Chem 69:2061–2066

    Google Scholar 

  • van Meulebroek L, Vanhaecke L, de Swaef T, Steppe K, de Brabander H (2012) UHPLC-MS/MS to quantify liposoluble antioxidants in red-ripe tomatoes, grown under different salt stress levels. J Agric Food Chem 60:566–573

    Article  PubMed  CAS  Google Scholar 

  • Weedon BCL, Moss GP (1995) Structure and nomenclature. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A, isolation and analysis. Birkhaüser Verlag, Basel, pp 27–70

    Google Scholar 

  • Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry. J Agric Food Chem 51:7044–7049

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Song W, Wang J, Li G (2012) Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples. Anal Chim Acta 712:85–93

    Article  CAS  PubMed  Google Scholar 

  • Yue X, Xu Z, Prinyawiwatkul W, King JM (2006) Improving extraction of lutein from egg yolk using an ultrasound-assisted solvent method. J Food Sci 71:C239–C241

    Article  CAS  Google Scholar 

  • Zechmeister L, LeRosen AL, Went FW, Pauling L (1941) Prolycopene, a naturally occurring stereoisomer of lycopene. Proc Natl Acad Sci USA 27:468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia B. Rodriguez-Amaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez-Amaya, D.B. (2016). Structures and Analysis of Carotenoid Molecules. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_3

Download citation

Publish with us

Policies and ethics