Carotenoids in Adipose Tissue Biology and Obesity

  • M. Luisa Bonet
  • Jose A. Canas
  • Joan Ribot
  • Andreu Palou
Part of the Subcellular Biochemistry book series (SCBI, volume 79)


Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.


Carotenoids Apocarotenoids Retinoids Vitamin A metabolism Obesity Adiposity Energy metabolism White adipose tissue browning Human epidemiological studies 



alcohol dehydrogenase


aldehyde dehydrogenase


AMP-dependent protein kinase


all trans retinoic acid


brown adipose tissue








body mass index


body weight


CCAAT-enhancer binding protein


cluster of differentiation 36


cellular retinoic acid binding protein


cellular retinol binding protein


fatty acid binding protein


intestine-specific homeobox


lecithin: retinol acyltransferase


low density lipoprotein receptor


lipoprotein lipase


nuclear factor κB


nuclear factor erythroid 2-related factor 2


peroxisome proliferator activated receptor




retinoic acid receptor

RBP (or RBP4)

retinol binding protein


RBP receptor 2


retinol dehydrogenase


retinyl ester hydrolase


reactive oxygen species


retinoid X receptor


scavenger receptor class B, member 1


stimulated retinoic acid 6


uncoupling protein 1


white adipose.



The authors acknowledge funding support from the European Union’s Seventh Framework Programme FP7 under grant agreements n. 244995 (BIOCLAIMS Project) and n. 278373 (DIABAT project), the Spanish Government (grant AGL2012-33692), Fundación Ramón Areces, and the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, CIBERobn. The authors are also grateful to The Nemours Research Foundation and The Players Center for Child Health at Wolfson Children’s Hospital in Jacksonville, Florida for their generous support. The UIB group is a member of the European Nutrigenomics Organization and the network IBERCAROT (CYTED, Spanish Government, n° 112RT0445).


  1. Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12(1):72–81PubMedCrossRefGoogle Scholar
  2. Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54(7):1761–1775PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, Rodriguez Diaz E, Bacon BT, Aryal P, Graham TE (2013) Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem 288(2):1250–1265PubMedCrossRefGoogle Scholar
  4. Alvarez R, de Andres J, Yubero P, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F (1995) A novel regulatory pathway of brown fat thermogenesis. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J Biol Chem 270(10):5666–5673PubMedCrossRefGoogle Scholar
  5. Alvarez R, Checa M, Brun S, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F (2000) Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids. Biochem J 345(Pt 1):91–97PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amengual J, Ribot J, Bonet ML, Palou A (2008) Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity (Silver Spring) 16(3):585–591CrossRefGoogle Scholar
  7. Amengual J, Ribot J, Bonet ML, Palou A (2010) Retinoic acid treatment enhances lipid oxidation and inhibits lipid biosynthesis capacities in the liver of mice. Cell Physiol Biochem 25(6):657–666PubMedCrossRefGoogle Scholar
  8. Amengual J, Gouranton E, van Helden YG, Hessel S, Ribot J, Kramer E, Kiec-Wilk B, Razny U, Lietz G, Wyss A, Dembinska-Kiec A, Palou A, Keijer J, Landrier JF, Bonet ML, von Lintig J (2011a) Beta-carotene reduces body adiposity of mice via BCMO1. PLoS One 6(6), e20644PubMedPubMedCentralCrossRefGoogle Scholar
  9. Amengual J, Lobo GP, Golczak M, Li HN, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J (2011b) A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25(3):948–959PubMedPubMedCentralCrossRefGoogle Scholar
  10. Amengual J, Petrov P, Bonet ML, Ribot J, Palou A (2012) Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. Int J Biochem Cell Biol 44(11):2019–2027PubMedCrossRefGoogle Scholar
  11. Amengual J, Widjaja-Adhi MA, Rodriguez-Santiago S, Hessel S, Golczak M, Palczewski K, von Lintig J (2013) Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. J Biol Chem 288(47):34081–34096PubMedPubMedCentralCrossRefGoogle Scholar
  12. Andersen LF, Jacobs DR Jr, Gross MD, Schreiner PJ, Dale Williams O, Lee DH (2006) Longitudinal associations between body mass index and serum carotenoids: the CARDIA study. Br J Nutr 95(2):358–365PubMedCrossRefGoogle Scholar
  13. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81(3):1269–1304PubMedGoogle Scholar
  14. Arner P, Spalding KL (2010) Fat cell turnover in humans. Biochem Biophys Res Commun 396(1):101–104PubMedCrossRefGoogle Scholar
  15. Arunkumar E, Bhuvaneswari S, Anuradha CV (2012) An intervention study in obese mice with astaxanthin, a marine carotenoid – effects on insulin signaling and pro-inflammatory cytokines. Food Funct 3(2):120–126PubMedCrossRefGoogle Scholar
  16. Bairras C, Menard L, Redonnet A, Ferrand C, Delage B, Noel-Suberville C, Atgie C, Higueret P (2005) Effect of vitamin A content in cafeteria diet on the expression of nuclear receptors in rat subcutaneous adipose tissue. J Physiol Biochem 61(2):353–361PubMedCrossRefGoogle Scholar
  17. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16PubMedCrossRefGoogle Scholar
  18. Beck J, Ferrucci L, Sun K, Fried LP, Varadhan R, Walston J, Guralnik JM, Semba RD (2008) Circulating oxidized low-density lipoproteins are associated with overweight, obesity, and low serum carotenoids in older community-dwelling women. Nutrition 24(10):964–968PubMedPubMedCentralCrossRefGoogle Scholar
  19. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 29(12):3286–3296PubMedPubMedCentralCrossRefGoogle Scholar
  20. Berry DC, Jin H, Majumdar A, Noy N (2011) Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc Natl Acad Sci U S A 108(11):4340–4345PubMedPubMedCentralCrossRefGoogle Scholar
  21. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N (2012) Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 61(5):1112–1121PubMedPubMedCentralCrossRefGoogle Scholar
  22. Berry DC, Jacobs H, Marwarha G, Gely-Pernot A, O’Byrne SM, DeSantis D, Klopfenstein M, Feret B, Dennefeld C, Blaner WS, Croniger CM, Mark M, Noy N, Ghyselinck NB (2013) The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 288(34):24528–24539PubMedPubMedCentralCrossRefGoogle Scholar
  23. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB (2011) Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 141(5):903–913PubMedPubMedCentralCrossRefGoogle Scholar
  24. Beydoun MA, Canas JA, Beydoun HA, Chen X, Shroff MR, Zonderman AB (2012) Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. J Nutr 142(9):1693–1704PubMedPubMedCentralCrossRefGoogle Scholar
  25. Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66(7):606–630PubMedCrossRefGoogle Scholar
  26. Bonet ML, Oliver J, Pico C, Felipe F, Ribot J, Cinti S, Palou A (2000) Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol 166(3):511–517PubMedCrossRefGoogle Scholar
  27. Bonet ML, Ribot J, Felipe F, Palou A (2003) Vitamin A and the regulation of fat reserves. Cell Mol Life Sci 60(7):1311–1321PubMedCrossRefGoogle Scholar
  28. Bonet ML, Ribot J, Palou A (2012) Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta 1821(1):177–189PubMedCrossRefGoogle Scholar
  29. Bonet ML, Oliver P, Palou A (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 1831(5):969–985PubMedCrossRefGoogle Scholar
  30. Bonet ML, Canas JA, Ribot J, Palou A (2015) Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 572:112–125PubMedCrossRefGoogle Scholar
  31. Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B (2002) Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 361(Pt 3):621–627PubMedPubMedCentralCrossRefGoogle Scholar
  32. Botella-Carretero JI, Balsa JA, Vazquez C, Peromingo R, Diaz-Enriquez M, Escobar-Morreale HF (2010) Retinol and alpha-tocopherol in morbid obesity and nonalcoholic fatty liver disease. Obes Surg 20(1):69–76PubMedCrossRefGoogle Scholar
  33. Boulanger A, McLemore P, Copeland NG, Gilbert DJ, Jenkins NA, Yu SS, Gentleman S, Redmond TM (2003) Identification of beta-carotene 15, 15′-monooxygenase as a peroxisome proliferator-activated receptor target gene. FASEB J 17(10):1304–1306PubMedGoogle Scholar
  34. Brady WE, Mares-Perlman JA, Bowen P, Stacewicz-Sapuntzakis M (1996) Human serum carotenoid concentrations are related to physiologic and lifestyle factors. J Nutr 126(1):129–137PubMedGoogle Scholar
  35. Breitman TR, Takahashi N (1996) Retinoylation of proteins in mammalian cells. Biochem Soc Trans 24(3):723–727PubMedCrossRefGoogle Scholar
  36. Brun PJ, Yang KJ, Lee SA, Yuen JJ, Blaner WS (2013) Retinoids: Potent regulators of metabolism. Biofactors 39(2):151–163PubMedCrossRefGoogle Scholar
  37. Burrows TL, Warren JM, Colyvas K, Garg ML, Collins CE (2009) Validation of overweight children’s fruit and vegetable intake using plasma carotenoids. Obesity (Silver Spring) 17(1):162–168CrossRefGoogle Scholar
  38. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jonsson LS, Kolb H, Lansink M, Marcos A, Margioris A, Matusheski N, Nordmann H, O’Brien J, Pugliese G, Rizkalla S, Schalkwijk C, Tuomilehto J, Warnberg J, Watzl B, Winklhofer-Roob BM (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106(Suppl 3):S5–S78PubMedCrossRefGoogle Scholar
  39. Canas JA, Damaso L, Altomare A, Killen K, Hossain J, Balagopal PB (2012) Insulin resistance and adiposity in relation to serum beta-carotene levels. J Pediatr 161(1):58–64 e51-52PubMedCrossRefGoogle Scholar
  40. Canas J, Lochrie A, Galena McGowan A, Schettino C, Hossain J, Balagopal P (2014) Effect of a 2-week intense life-style intervention followed by 6-month carotenoid supplementation on fat depots, adiponectin and palmitoleate: a 6-month double blind placebo-controlled pilot study in obese children. FASEB J 28(1):645.6Google Scholar
  41. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359PubMedCrossRefGoogle Scholar
  42. Cano MP, de Ancos B (1994) Carotenoid and carotenoid ester composition in mango fruit as influenced by processing method. J Agric Food Chem 42:2737–2742CrossRefGoogle Scholar
  43. Chawla A, Lazar MA (1994) Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival. Proc Natl Acad Sci U S A 91(5):1786–1790PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chung HY, Ferreira AL, Epstein S, Paiva SA, Castaneda-Sceppa C, Johnson EJ (2009) Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults. Am J Clin Nutr 90(3):533–539PubMedCrossRefGoogle Scholar
  45. Cryer A, Jones HM (1979) The early development of white adipose tissue. Effects of litter size on the lipoprotein lipase activity of four adipose-tissue depots, serum immunoreactive insulin and tissue cellularity during the first four weeks of life in the rat. Biochem J 178(3):711–724PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG, Koutnikova H, Auwerx J, Nebb HI (2004) Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 53(5):1243–1252PubMedCrossRefGoogle Scholar
  47. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110(Pt 11):1279–1285PubMedGoogle Scholar
  48. Dave S, Nanduri R, Dkhar HK, Bhagyaraj E, Rao A, Gupta P (2014) Nuclear MEK1 sequesters PPARgamma and bisects MEK1/ERK signaling: a non-canonical pathway of retinoic acid inhibition of adipocyte differentiation. PLoS One 9(6), e100862PubMedPubMedCentralCrossRefGoogle Scholar
  49. de Souza Valente da Silva L, Valeria da Veiga G, Ramalho RA (2007) Association of serum concentrations of retinol and carotenoids with overweight in children and adolescents. Nutrition 23(5):392–397PubMedCrossRefGoogle Scholar
  50. Decsi T, Molnar D, Koletzko B (1997) Reduced plasma concentrations of alpha-tocopherol and beta-carotene in obese boys. J Pediatr 130(4):653–655PubMedCrossRefGoogle Scholar
  51. del Mar Gonzalez-Barroso M, Pecqueur C, Gelly C, Sanchis D, Alves-Guerra MC, Bouillaud F, Ricquier D, Cassard-Doulcier AM (2000) Transcriptional activation of the human ucp1 gene in a rodent cell line. Synergism of retinoids, isoproterenol, and thiazolidinedione is mediated by a multipartite response element. J Biol Chem 275(41):31722–31732PubMedCrossRefGoogle Scholar
  52. Elliott R (2005) Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta 1740(2):147–154PubMedCrossRefGoogle Scholar
  53. El-Sohemy A, Baylin A, Kabagambe E, Ascherio A, Spiegelman D, Campos H (2002) Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am J Clin Nutr 76(1):172–179PubMedGoogle Scholar
  54. Emek SC, Szilagyi A, Akerlund HE, Albertsson PA, Kohnke R, Holm A, Erlanson-Albertsson C (2010) A large scale method for preparation of plant thylakoids for use in body weight regulation. Prep Biochem Biotechnol 40(1):13–27PubMedCrossRefGoogle Scholar
  55. Erlinger TP, Guallar E, Miller ER 3rd, Stolzenberg-Solomon R, Appel LJ (2001) Relationship between systemic markers of inflammation and serum beta-carotene levels. Arch Intern Med 161(15):1903–1908PubMedCrossRefGoogle Scholar
  56. Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54(7):1719–1730PubMedPubMedCentralCrossRefGoogle Scholar
  57. Eroglu A, Hruszkewycz DP, dela Sena C, Narayanasamy S, Riedl KM, Kopec RE, Schwartz SJ, Curley RW Jr, Harrison EH (2012) Naturally occurring eccentric cleavage products of provitamin A beta-carotene function as antagonists of retinoic acid receptors. J Biol Chem 287(19):15886–15895PubMedPubMedCentralCrossRefGoogle Scholar
  58. Esteban-Pretel G, Marin MP, Cabezuelo F, Moreno V, Renau-Piqueras J, Timoneda J, Barber T (2010) Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats. J Nutr 140(4):792–798PubMedCrossRefGoogle Scholar
  59. Esteve E, Ricart W, Fernandez-Real JM (2009) Adipocytokines and insulin resistance: the possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care 32(Suppl 2):S362–S367PubMedPubMedCentralCrossRefGoogle Scholar
  60. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273PubMedPubMedCentralCrossRefGoogle Scholar
  61. Felipe F, Bonet ML, Ribot J, Palou A (2003) Up-regulation of muscle uncoupling protein 3 gene expression in mice following high fat diet, dietary vitamin A supplementation and acute retinoic acid-treatment. Int J Obes Relat Metab Disord 27(1):60–69PubMedCrossRefGoogle Scholar
  62. Felipe F, Bonet ML, Ribot J, Palou A (2004) Modulation of resistin expression by retinoic acid and vitamin A status. Diabetes 53(4):882–889PubMedCrossRefGoogle Scholar
  63. Felipe F, Mercader J, Ribot J, Palou A, Bonet ML (2005) Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice: lack of correlation with changes of adipose tissue mass and food intake. Biochim Biophys Acta 1740(2):258–265PubMedCrossRefGoogle Scholar
  64. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466–488PubMedPubMedCentralCrossRefGoogle Scholar
  65. Flachs P, Rossmeisl M, Kuda O, Kopecky J (2013) Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta 1831(5):986–1003PubMedCrossRefGoogle Scholar
  66. Ford ES, Will JC, Bowman BA, Narayan KM (1999) Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 149(2):168–176PubMedCrossRefGoogle Scholar
  67. Ford ES, Gillespie C, Ballew C, Sowell A, Mannino DM (2002) Serum carotenoid concentrations in US children and adolescents. Am J Clin Nutr 76(4):818–827PubMedGoogle Scholar
  68. Ford ES, Liu S, Mannino DM, Giles WH, Smith SJ (2003) C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults. Eur J Clin Nutr 57(9):1157–1163PubMedCrossRefGoogle Scholar
  69. Frey SK, Vogel S (2011) Vitamin A metabolism and adipose tissue biology. Nutrients 3(1):27–39PubMedPubMedCentralCrossRefGoogle Scholar
  70. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fuster A, Pico C, Sanchez J, Oliver P, Zingaretti MC, Murano I, Morroni M, Hoeller U, Goralczyk R, Cinti S, Palou A (2008) Effects of 6-month daily supplementation with oral beta-carotene in combination or not with benzo[a]pyrene on cell-cycle markers in the lung of ferrets. J Nutr Biochem 19(5):295–304PubMedCrossRefGoogle Scholar
  72. Gallicchio L, Boyd K, Matanoski G, Tao XG, Chen L, Lam TK, Shiels M, Hammond E, Robinson KA, Caulfield LE, Herman JG, Guallar E, Alberg AJ (2008) Carotenoids and the risk of developing lung cancer: a systematic review. Am J Clin Nutr 88(2):372–383PubMedGoogle Scholar
  73. Gerhard GS, Styer AM, Strodel WE, Roesch SL, Yavorek A, Carey DJ, Wood GC, Petrick AT, Gabrielsen J, Ibele A, Benotti P, Rolston DD, Still CD, Argyropoulos G (2014) Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes (Lond) 38(3):371–378CrossRefGoogle Scholar
  74. Ghavipour M, Saedisomeolia A, Djalali M, Sotoudeh G, Eshraghyan MR, Moghadam AM, Wood LG (2013) Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr 109(11):2031–2035PubMedCrossRefGoogle Scholar
  75. Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154(9):2992–3000PubMedCrossRefGoogle Scholar
  76. Gorocica-Buenfil MA, Fluharty FL, Bohn T, Schwartz SJ, Loerch SC (2007) Effect of low vitamin A diets with high-moisture or dry corn on marbling and adipose tissue fatty acid composition of beef steers. J Anim Sci 85(12):3355–3366PubMedCrossRefGoogle Scholar
  77. Goto T, Kim YI, Takahashi N, Kawada T (2013) Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res 57(1):20–33PubMedCrossRefGoogle Scholar
  78. Gouranton E, Yazidi CE, Cardinault N, Amiot MJ, Borel P, Landrier JF (2008) Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes. Food Chem Toxicol 46(12):3832–3836PubMedCrossRefGoogle Scholar
  79. Gouranton E, Thabuis C, Riollet C, Malezet-Desmoulins C, El Yazidi C, Amiot MJ, Borel P, Landrier JF (2010) Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J Nutr Biochem 22(7):642–648PubMedCrossRefGoogle Scholar
  80. Gouranton E, Aydemir G, Reynaud E, Marcotorchino J, Malezet C, Caris-Veyrat C, Blomhoff R, Landrier JF, Ruhl R (2011) Apo-10′-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors. Biochim Biophys Acta 1811(12):1105–1114PubMedCrossRefGoogle Scholar
  81. Granados N, Amengual J, Ribot J, Musinovic H, Ceresi E, von Lintig J, Palou A, Bonet ML (2013) Vitamin A supplementation in early life affects later response to an obesogenic diet in rats. Int J Obes (Lond) 37(9):1169–1176CrossRefGoogle Scholar
  82. Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, Thurnham D, Yin SA, Biesalski HK (2010) Beta-carotene is an important vitamin A source for humans. J Nutr 140(12):2268S–2285SPubMedPubMedCentralCrossRefGoogle Scholar
  83. Gunanti IR, Marks GC, Al-Mamun A, Long KZ (2014) Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican-American children. J Nutr 144(4):489–495PubMedCrossRefGoogle Scholar
  84. Hamdy O, Porramatikul S, Al-Ozairi E (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2(4):367–373PubMedCrossRefGoogle Scholar
  85. Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821(1):70–77PubMedCrossRefGoogle Scholar
  86. Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S, Hoeller U, Elste V, Hunziker W, Goralczyk R, Oberhauser V, von Lintig J, Wyss A (2007) CMO1 deficiency abolishes vitamin A production from beta-carotene and alters lipid metabolism in mice. J Biol Chem 282(46):33553–33561PubMedCrossRefGoogle Scholar
  87. Higdon JV, Frei B (2003) Obesity and oxidative stress: a direct link to CVD? Arterioscler Thromb Vasc Biol 23(3):365–367PubMedCrossRefGoogle Scholar
  88. Hollung K, Rise CP, Drevon CA, Reseland JE (2004) Tissue-specific regulation of leptin expression and secretion by all-trans retinoic acid. J Cell Biochem 92(2):307–315PubMedCrossRefGoogle Scholar
  89. Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, Okada T, Miyashita K (2010) Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys 504(1):17–25PubMedCrossRefGoogle Scholar
  90. Hozawa A, Jacobs DR Jr, Steffes MW, Gross MD, Steffen LM, Lee DH (2007) Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin Chem 53(3):447–455PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, Li D (2012) Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys 519(1):59–65PubMedCrossRefGoogle Scholar
  92. Huang KC, Lin RC, Kormas N, Lee LT, Chen CY, Gill TP, Caterson ID (2004) Plasma leptin is associated with insulin resistance independent of age, body mass index, fat mass, lipids, and pubertal development in nondiabetic adolescents. Int J Obes Relat Metab Disord 28(4):470–475PubMedCrossRefGoogle Scholar
  93. Ikeuchi M, Koyama T, Takahashi J, Yazawa K (2007) Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 71(4):893–899PubMedCrossRefGoogle Scholar
  94. Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, Takahashi J (2012) Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor gamma modulator in adipocytes and macrophages. Biochem Pharmacol 84(5):692–700PubMedCrossRefGoogle Scholar
  95. Iwamoto M, Imai K, Ohta H, Shirouchi B, Sato M (2012) Supplementation of highly concentrated beta-cryptoxanthin in a satsuma mandarin beverage improves adipocytokine profiles in obese Japanese women. Lipids Health Dis 11:52PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jeon SM, Kim HJ, Woo MN, Lee MK, Shin YC, Park YB, Choi MS (2010) Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6 J mice. Biotechnol J 5(9):961–969PubMedCrossRefGoogle Scholar
  97. Jeyakumar SM, Vajreswari A, Giridharan NV (2006) Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring) 14(1):52–59CrossRefGoogle Scholar
  98. Jeyakumar SM, Vajreswari A, Giridharan NV (2008) Vitamin A regulates obesity in WNIN/Ob obese rat; independent of stearoyl-CoA desaturase-1. Biochem Biophys Res Commun 370(2):243–247PubMedCrossRefGoogle Scholar
  99. Jiang W, Napoli JL (2012) Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis. Biochim Biophys Acta 1820(7):859–869PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jiang W, Napoli JL (2013) The retinol dehydrogenase Rdh10 localizes to lipid droplets during acyl ester biosynthesis. J Biol Chem 288(1):589–597PubMedCrossRefGoogle Scholar
  101. Johnson EJ (2014) Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev 72(9):605–612PubMedCrossRefGoogle Scholar
  102. Kabagambe EK, Furtado J, Baylin A, Campos H (2005) Some dietary and adipose tissue carotenoids are associated with the risk of nonfatal acute myocardial infarction in Costa Rica. J Nutr 135(7):1763–1769PubMedGoogle Scholar
  103. Kameji H, Mochizuki K, Miyoshi N, Goda T (2010) beta-Carotene accumulation in 3 T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-alpha. Nutrition 26(11-12):1151–1156PubMedCrossRefGoogle Scholar
  104. Kane MA, Folias AE, Napoli JL (2008a) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 378(1):71–79PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kane MA, Folias AE, Wang C, Napoli JL (2008b) Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal Chem 80(5):1702–1708PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kang SI, Ko HC, Shin HS, Kim HM, Hong YS, Lee NH, Kim SJ (2011) Fucoxanthin exerts differing effects on 3 T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes. Biochem Biophys Res Commun 409(4):769–774PubMedCrossRefGoogle Scholar
  107. Kang SI, Shin HS, Kim HM, Yoon SA, Kang SW, Kim JH, Ko HC, Kim SJ (2012) Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. J Agric Food Chem 60(13):3389–3395PubMedCrossRefGoogle Scholar
  108. Kaplan LA, Lau JM, Stein EA (1990) Carotenoid composition, concentrations, and relationships in various human organs. Clin Physiol Biochem 8(1):1–10PubMedGoogle Scholar
  109. Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress – implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34(11):907–929PubMedCrossRefGoogle Scholar
  110. Kawada T, Kamei Y, Sugimoto E (1996) The possibility of active form of vitamins A and D as suppressors on adipocyte development via ligand-dependent transcriptional regulators. Int J Obes Relat Metab Disord 20(Suppl 3):S52–S57PubMedGoogle Scholar
  111. Kawada T, Kamei Y, Fujita A, Hida Y, Takahashi N, Sugimoto E, Fushiki T (2000) Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors. Biofactors 13(1-4):103–109PubMedCrossRefGoogle Scholar
  112. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315(5813):820–825PubMedCrossRefGoogle Scholar
  113. Kesse-Guyot E, Ahluwalia N, Lassale C, Hercberg S, Fezeu L, Lairon D (2013) Adherence to Mediterranean diet reduces the risk of metabolic syndrome: a 6-year prospective study. Nutr Metab Cardiovasc Dis 23(7):677–683PubMedCrossRefGoogle Scholar
  114. Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S, Zeyda M, Stulnig TM, Cohen DE, Kahn CR, Plutzky J (2012) Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 18(6):918–925PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kim HS, Jeong SY, Lee JH, Kim BE, Kim JW, Jeong SW, Kim IK (2000) Induction of apoptosis in human leukemia cells by 3-deazaadenosine is mediated by caspase-3-like activity. Exp Mol Med 32(4):197–203PubMedCrossRefGoogle Scholar
  116. Kim KN, Heo SJ, Yoon WJ, Kang SM, Ahn G, Yi TH, Jeon YJ (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1-3):369–375PubMedCrossRefGoogle Scholar
  117. Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK (2006) Associations between body mass index and the prevalence of low micronutrient levels among US adults. Med Gen Med 8(4):59Google Scholar
  118. Klyde BJ, Hirsch J (1979) Increased cellular proliferation in adipose tissue of adult rats fed a high-fat diet. J Lipid Res 20(6):705–715PubMedGoogle Scholar
  119. Kohlmeier L, Kohlmeier M (1995) Adipose tissue as a medium for epidemiologic exposure assessment. Environ Health Perspect 103(Suppl 3):99–106PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kritchevsky SB, Bush AJ, Pahor M, Gross MD (2000) Serum carotenoids and markers of inflammation in nonsmokers. Am J Epidemiol 152(11):1065–1071PubMedCrossRefGoogle Scholar
  121. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T et al (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4(4):597–609PubMedCrossRefGoogle Scholar
  122. Kumar MV, Scarpace PJ (1998) Differential effects of retinoic acid on uncoupling protein-1 and leptin gene expression. J Endocrinol 157(2):237–243PubMedCrossRefGoogle Scholar
  123. Kumar MV, Sunvold GD, Scarpace PJ (1999) Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. J Lipid Res 40(5):824–829PubMedGoogle Scholar
  124. Kuri-Harcuch W (1982) Differentiation of 3 T3-F442A cells into adipocytes is inhibited by retinoic acid. Differentiation 23(2):164–169PubMedCrossRefGoogle Scholar
  125. Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho CT, Pan MH (2012) Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARgamma and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem 60(4):1094–1101PubMedCrossRefGoogle Scholar
  126. Landrier JF, Marcotorchino J, Tourniaire F (2012) Lipophilic micronutrients and adipose tissue biology. Nutrients 4(11):1622–1649PubMedPubMedCentralCrossRefGoogle Scholar
  127. Larose M, Cassard-Doulcier AM, Fleury C, Serra F, Champigny O, Bouillaud F, Ricquier D (1996) Essential cis-acting elements in rat uncoupling protein gene are in an enhancer containing a complex retinoic acid response domain. J Biol Chem 271:31533–31542PubMedCrossRefGoogle Scholar
  128. Le Lay S, Simard G, Martinez MC, Andriantsitohaina R (2014) Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev 2014:908539PubMedPubMedCentralGoogle Scholar
  129. Lederman JD, Overton KM, Hofmann NE, Moore BJ, Thornton J, Erdman JW (1998) Ferrets (Mustela putoius furo) inefficiently convert beta-carotene to vitamin A. J Nutr 128(2):271–279PubMedGoogle Scholar
  130. Lee CM, Boileau AC, Boileau TW, Williams AW, Swanson KS, Heintz KA, Erdman JW Jr (1999) Review of animal models in carotenoid research. J Nutr 129(12):2271–2277PubMedGoogle Scholar
  131. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM (2006) PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 103(9):3444–3449PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34(1):1–11PubMedCrossRefGoogle Scholar
  133. Lindqvist A, Andersson S (2002) Biochemical properties of purified recombinant human beta-carotene 15,15′-monooxygenase. J Biol Chem 277(26):23942–23948PubMedCrossRefGoogle Scholar
  134. Lobo GP, Amengual J, Li HN, Golczak M, Bonet ML, Palczewski K, von Lintig J (2010a) Beta, beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta, beta-carotene oxygenase 1-dependent manner. J Biol Chem 285(36):27891–27899PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lobo GP, Hessel S, Eichinger A, Noy N, Moise AR, Wyss A, Palczewski K, von Lintig J (2010b) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. FASEB J 24(6):1656–1666PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lobo GP, Isken A, Hoff S, Babino D, von Lintig J (2012) BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 139(16):2966–2977PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lucas EA, Li W, Peterson SK, Brown A, Kuvibidila S, Perkins-Veazie P, Clarke SL, Smith BJ (2011) Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet. Br J Nutr 106(10):1495–1505PubMedCrossRefGoogle Scholar
  138. Luquet S, Gaudel C, Holst D, Lopez-Soriano J, Jehl-Pietri C, Fredenrich A, Grimaldi PA (2005) Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta 1740(2):313–317PubMedCrossRefGoogle Scholar
  139. Luvizotto Rde A, Nascimento AF, Imaizumi E, Pierine DT, Conde SJ, Correa CR, Yeum KJ, Ferreira AL (2013) Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br J Nutr 110(10):1803–1809PubMedCrossRefGoogle Scholar
  140. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397PubMedCrossRefGoogle Scholar
  141. Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K (2006) Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3 T3-L1 cells. Int J Mol Med 18(1):147–152PubMedGoogle Scholar
  142. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2007) Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci 56(12):615–621PubMedCrossRefGoogle Scholar
  143. Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K (2009) Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Report 2(6):897–902CrossRefGoogle Scholar
  144. Manolescu DC, Sima A, Bhat PV (2010) All-trans retinoic acid lowers serum retinol-binding protein 4 concentrations and increases insulin sensitivity in diabetic mice. J Nutr 140(2):311–316PubMedCrossRefGoogle Scholar
  145. Marchildon F, St-Louis C, Akter R, Roodman V, Wiper-Bergeron NL (2010) Transcription factor Smad3 is required for the inhibition of adipogenesis by retinoic acid. J Biol Chem 285(17):13274–13284PubMedPubMedCentralCrossRefGoogle Scholar
  146. Marcotorchino J, Romier B, Gouranton E, Riollet C, Gleize B, Malezet-Desmoulins C, Landrier JF (2012) Lycopene attenuates LPS-induced TNF-alpha secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media. Mol Nutr Food Res 56(5):725–732PubMedCrossRefGoogle Scholar
  147. Menendez C, Lage M, Peino R, Baldelli R, Concheiro P, Dieguez C, Casanueva FF (2001) Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J Endocrinol 170(2):425–431PubMedCrossRefGoogle Scholar
  148. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML, Palou A (2006) Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 147(11):5325–5332PubMedCrossRefGoogle Scholar
  149. Mercader J, Madsen L, Felipe F, Palou A, Kristiansen K, Bonet ML (2007) All-trans retinoic acid increases oxidative metabolism in mature adipocytes. Cell Physiol Biochem 20(6):1061–1072PubMedCrossRefGoogle Scholar
  150. Mercader J, Granados N, Bonet ML, Palou A (2008) All-trans retinoic acid decreases murine adipose retinol binding protein 4 production. Cell Physiol Biochem 22(1-4):363–372PubMedCrossRefGoogle Scholar
  151. Mercader J, Palou A, Bonet ML (2010) Induction of uncoupling protein-1 in mouse embryonic fibroblast-derived adipocytes by retinoic acid. Obesity (Silver Spring) 18(4):655–662CrossRefGoogle Scholar
  152. Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M (2011) The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric 91(7):1166–1174PubMedCrossRefGoogle Scholar
  153. Moor de Burgos A, Wartanowicz M, Ziemlanski S (1992) Blood vitamin and lipid levels in overweight and obese women. Eur J Clin Nutr 46(11):803–808PubMedGoogle Scholar
  154. Moussa M, Gouranton E, Gleize B, Yazidi CE, Niot I, Besnard P, Borel P, Landrier JF (2011) CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Mol Nutr Food Res 55(4):578–584PubMedCrossRefGoogle Scholar
  155. Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR Jr, Heyman RA (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386(6623):407–410PubMedCrossRefGoogle Scholar
  156. Murano I, Morroni M, Zingaretti MC, Oliver P, Sanchez J, Fuster A, Pico C, Palou A, Cinti S (2005) Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral beta-carotene. Biochim Biophys Acta 1740(2):305–312PubMedCrossRefGoogle Scholar
  157. Murholm M, Isidor MS, Basse AL, Winther S, Sorensen C, Skovgaard-Petersen J, Nielsen MM, Hansen AS, Quistorff B, Hansen JB (2013) Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol 14:41PubMedPubMedCentralCrossRefGoogle Scholar
  158. Murray T, Russell TR (1980) Inhibition of adipose conversion in 3 T3-L2 cells by retinoic acid. J Supramol Struct 14(2):255–266PubMedCrossRefGoogle Scholar
  159. Musinovic H, Bonet ML, Granados N, Amengual J, von Lintig J, Ribot J, Palou A (2014) beta-Carotene during the suckling period is absorbed intact and induces retinoic acid dependent responses similar to preformed vitamin A in intestine and liver, but not adipose tissue of young rats. Mol Nutr Food Res 58(11):2157–2165PubMedCrossRefGoogle Scholar
  160. Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Kiyokawa H, Cooke PS (2004) Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J 18(15):1925–1927PubMedGoogle Scholar
  161. Neuhouser ML, Rock CL, Eldridge AL, Kristal AR, Patterson RE, Cooper DA, Neumark-Sztainer D, Cheskin LJ, Thornquist MD (2001) Serum concentrations of retinol, alpha-tocopherol and the carotenoids are influenced by diet, race and obesity in a sample of healthy adolescents. J Nutr 131(8):2184–2191PubMedGoogle Scholar
  162. Noy N (2013) The one-two punch: Retinoic acid suppresses obesity both by promoting energy expenditure and by inhibiting adipogenesis. Adipocyte 2(3):184–187PubMedPubMedCentralCrossRefGoogle Scholar
  163. Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K (2008) Suppressive effect of neoxanthin on the differentiation of 3 T3-L1 adipose cells. J Oleo Sci 57(6):345–351PubMedCrossRefGoogle Scholar
  164. Okada T, Mizuno Y, Sibayama S, Hosokawa M, Miyashita K (2011) Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids. J Food Sci 76(1):H2–H6PubMedCrossRefGoogle Scholar
  165. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334(18):1150–1155PubMedCrossRefGoogle Scholar
  166. Osth M, Ost A, Kjolhede P, Stralfors P (2014) The concentration of beta-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity. PLoS One 9(1), e85610PubMedPubMedCentralCrossRefGoogle Scholar
  167. Palou A, Bonet ML (2013) Challenges in obesity research. Nutr Hosp 28(Suppl 5):144–153PubMedGoogle Scholar
  168. Palou A, Pico C, Bonet ML (2013) Nutritional potential of metabolic remodelling of white adipose tissue. Curr Opin Clin Nutr Metab Care 16(6):650–656PubMedCrossRefGoogle Scholar
  169. Palozza P (1998) Prooxidant actions of carotenoids in biologic systems. Nutr Rev 56(9):257–265PubMedCrossRefGoogle Scholar
  170. Parker RS (1989) Carotenoids in human blood and tissues. J Nutr 119(1):101–104PubMedGoogle Scholar
  171. Peinado JR, Jimenez-Gomez Y, Pulido MR, Ortega-Bellido M, Diaz-Lopez C, Padillo FJ, Lopez-Miranda J, Vazquez-Martinez R, Malagon MM (2010) The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics 10(18):3356–3366PubMedCrossRefGoogle Scholar
  172. Perez-Perez R, Ortega-Delgado FJ, Garcia-Santos E, Lopez JA, Camafeita E, Ricart W, Fernandez-Real JM, Peral B (2009) Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J Proteome Res 8(4):1682–1693PubMedCrossRefGoogle Scholar
  173. Pico C, Palou A (2013) Perinatal programming of obesity: an introduction to the topic. Front Physiol 4:255PubMedPubMedCentralCrossRefGoogle Scholar
  174. Puigserver P, Vazquez F, Bonet ML, Pico C, Palou A (1996) In vitro and in vivo induction of brown adipocyte uncoupling protein (thermogenin) by retinoic acid. Biochem J 317(Pt 3):827–833PubMedPubMedCentralCrossRefGoogle Scholar
  175. Rabelo R, Reyes C, Schifman A, Silva E (1996) A complex retinoic acid response element in the uncoupling protein gene defines a novel role for retinoids in thermogenesis. Endocrinology 137:3488–3496PubMedGoogle Scholar
  176. Reboul E (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 5(9):3563–3581PubMedPubMedCentralCrossRefGoogle Scholar
  177. Redonnet A, Ferrand C, Bairras C, Higueret P, Noel-Suberville C, Cassand P, Atgie C (2008) Synergic effect of vitamin A and high-fat diet in adipose tissue development and nuclear receptor expression in young rats. Br J Nutr 100(4):722–730PubMedCrossRefGoogle Scholar
  178. Reichert B, Yasmeen R, Jeyakumar SM, Yang F, Thomou T, Alder H, Duester G, Maiseyeu A, Mihai G, Harrison EH, Rajagopalan S, Kirkland JL, Ziouzenkova O (2011) Concerted action of aldehyde dehydrogenases influences depot-specific fat formation. Mol Endocrinol 25(5):799–809PubMedPubMedCentralCrossRefGoogle Scholar
  179. Ribot J, Felipe F, Bonet ML, Palou A (2001) Changes of adiposity in response to vitamin A status correlate with changes of PPAR gamma 2 expression. Obes Res 9(8):500–509PubMedCrossRefGoogle Scholar
  180. Rieck M, Meissner W, Ries S, Muller-Brusselbach S, Muller R (2008) Ligand-mediated regulation of peroxisome proliferator-activated receptor (PPAR) beta/delta: a comparative analysis of PPAR-selective agonists and all-trans retinoic acid. Mol Pharmacol 74(5):1269–1277PubMedCrossRefGoogle Scholar
  181. Rodriguez AM, Sastre S, Ribot J, Palou A (2005) Beta-carotene uptake and metabolism in human lung bronchial epithelial cultured cells depending on delivery vehicle. Biochim Biophys Acta 1740(2):132–138PubMedCrossRefGoogle Scholar
  182. Safonova I, Darimont C, Amri EZ, Grimaldi P, Ailhaud G, Reichert U, Shroot B (1994) Retinoids are positive effectors of adipose cell differentiation. Mol Cell Endocrinol 104(2):201–211PubMedCrossRefGoogle Scholar
  183. Saito M (2013) Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes Metab J 37(1):22–29PubMedPubMedCentralCrossRefGoogle Scholar
  184. Sakamuri VP, Ananthathmakula P, Veettil GN, Ayyalasomayajula V (2011) Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats. Nutr J 10:70PubMedPubMedCentralCrossRefGoogle Scholar
  185. Sanchez J, Fuster A, Oliver P, Palou A, Pico C (2009) Effects of beta-carotene supplementation on adipose tissue thermogenic capacity in ferrets (Mustela putorius furo). Br J Nutr 102(11):1686–1694PubMedCrossRefGoogle Scholar
  186. Sarni RO, Suano de Souza FI, Ramalho RA, Schoeps Dde O, Kochi C, Catherino P, Dias MC, Pessotti CF, Mattoso LC, Colugnat FA (2005) Serum retinol and total carotene concentrations in obese pre-school children. Med Sci Monit 11(11):CR510–CR514PubMedGoogle Scholar
  187. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129(4):723–733PubMedPubMedCentralCrossRefGoogle Scholar
  188. Schupp M, Lefterova MI, Janke J, Leitner K, Cristancho AG, Mullican SE, Qatanani M, Szwergold N, Steger DJ, Curtin JC, Kim RJ, Suh MJ, Albert MR, Engeli S, Gudas LJ, Lazar MA (2009) Retinol saturase promotes adipogenesis and is downregulated in obesity. Proc Natl Acad Sci U S A 106(4):1105–1110PubMedPubMedCentralCrossRefGoogle Scholar
  189. Schwarz EJ, Reginato MJ, Shao D, Krakow SL, Lazar MA (1997) Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol 17(3):1552–1561PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA (1996) Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 16(7):3410–3419PubMedPubMedCentralCrossRefGoogle Scholar
  191. Serra F, Bonet ML, Puigserver P, Oliver J, Palou A (1999) Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids. Int J Obes Relat Metab Disord 23(6):650–655PubMedCrossRefGoogle Scholar
  192. Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 278(43):41589–41592PubMedCrossRefGoogle Scholar
  193. Sheng L, Qian Z, Shi Y, Yang L, Xi L, Zhao B, Xu X, Ji H (2008) Crocetin improves the insulin resistance induced by high-fat diet in rats. Br J Pharmacol 154(5):1016–1024PubMedPubMedCentralCrossRefGoogle Scholar
  194. Shete V, Quadro L (2013) Mammalian metabolism of beta-carotene: gaps in knowledge. Nutrients 5(12):4849–4868PubMedPubMedCentralCrossRefGoogle Scholar
  195. Shirakura Y, Takayanagi K, Mukai K, Tanabe H, Inoue M (2011) beta-cryptoxanthin suppresses the adipogenesis of 3 T3-L1 cells via RAR activation. J Nutr Sci Vitaminol (Tokyo) 57(6):426–431CrossRefGoogle Scholar
  196. Sima A, Manolescu DC, Bhat P (2011) Retinoids and retinoid-metabolic gene expression in mouse adipose tissues. Biochem Cell Biol 89(6):578–584PubMedCrossRefGoogle Scholar
  197. Sliwa A, Goralska J, Czech U, Gruca A, Polus A, Zapala B, Dembinska-Kiec A (2012) Modulation of the human preadipocyte mitochondrial activity by beta-carotene. Acta Biochim Pol 59(1):39–41PubMedGoogle Scholar
  198. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT (2009) Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr 139(5):987–992PubMedCrossRefGoogle Scholar
  199. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787PubMedCrossRefGoogle Scholar
  200. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312PubMedCrossRefGoogle Scholar
  201. Stofkova A (2009) Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul 43(4):157–168PubMedGoogle Scholar
  202. Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44(1):25–36PubMedCrossRefGoogle Scholar
  203. Strauss RS (1999) Comparison of serum concentrations of alpha-tocopherol and beta-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J Pediatr 134(2):160–165PubMedCrossRefGoogle Scholar
  204. Strom K, Gundersen TE, Hansson O, Lucas S, Fernandez C, Blomhoff R, Holm C (2009) Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 23(7):2307–2316PubMedCrossRefGoogle Scholar
  205. Sugiura M, Nakamura M, Ikoma Y, Yano M, Ogawa K, Matsumoto H, Kato M, Ohshima M, Nagao A (2006) The homeostasis model assessment-insulin resistance index is inversely associated with serum carotenoids in non-diabetic subjects. J Epidemiol 16(2):71–78PubMedCrossRefGoogle Scholar
  206. Suzuki K, Inoue T, Hioki R, Ochiai J, Kusuhara Y, Ichino N, Osakabe K, Hamajima N, Ito Y (2006) Association of abdominal obesity with decreased serum levels of carotenoids in a healthy Japanese population. Clin Nutr 25(5):780–789PubMedCrossRefGoogle Scholar
  207. Takayanagi K, Mukai K (2014) Beta-Cryptoxanthin, a Novel Carotenoid Derived from Satsuma Mandarin, Prevents Abdominal Obesity. In: Watson RR (ed) Nutrition in the Prevention and Treatment of Abdominal Obesity. Elsevier Inc., San Diego, pp 381–399CrossRefGoogle Scholar
  208. Takayanagi K, Morimoto S, Shirakura Y, Mukai K, Sugiyama T, Tokuji Y, Ohnishi M (2011) Mechanism of visceral fat reduction in Tsumura Suzuki obese, diabetes (TSOD) mice orally administered beta-cryptoxanthin from Satsuma mandarin oranges (Citrus unshiu Marc). J Agric Food Chem 59(23):12342–12351PubMedCrossRefGoogle Scholar
  209. Tamori Y, Masugi J, Nishino N, Kasuga M (2002) Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3 T3-L1 adipocytes. Diabetes 51(7):2045–2055PubMedCrossRefGoogle Scholar
  210. Tan CP, Hou YH (2014) First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation 37(2):443–450PubMedCrossRefGoogle Scholar
  211. Tang G, Qin J, Dolnikowski GG, Russell RM (2003) Short-term (intestinal) and long-term (postintestinal) conversion of beta-carotene to retinol in adults as assessed by a stable-isotope reference method. Am J Clin Nutr 78(2):259–266PubMedGoogle Scholar
  212. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A 107(42):18226–18231PubMedPubMedCentralCrossRefGoogle Scholar
  213. Teas J, Baldeon ME, Chiriboga DE, Davis JR, Sarries AJ, Braverman LE (2009) Could dietary seaweed reverse the metabolic syndrome? Asia Pac J Clin Nutr 18(2):145–154PubMedGoogle Scholar
  214. Teruel T, Hernandez R, Benito M, Lorenzo M (2003) Rosiglitazone and retinoic acid induce uncoupling protein-1 (UCP-1) in a p38 mitogen-activated protein kinase-dependent manner in fetal primary brown adipocytes. J Biol Chem 278(1):263–269PubMedCrossRefGoogle Scholar
  215. The Alpha-Tocopherol BCCPSG (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330(15):1029–1035CrossRefGoogle Scholar
  216. Tourniaire F, Gouranton E, von Lintig J, Keijer J, Bonet ML, Amengual J, Lietz G, Landrier JF (2009) beta-Carotene conversion products and their effects on adipose tissue. Genes Nutr 4(3):179–187PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tourniaire F, Musinovic H, Gouranton E, Astier J, Marcotorchino J, Arreguin A, Bernot D, Palou A, Bonet ML, Ribot J, Landrier JF (2015) All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. J Lipid Res 56(6):1100–1109. doi: 10.1194/jlr.M053652. [Epub ahead of print]PubMedPubMedCentralCrossRefGoogle Scholar
  218. Tsuchida T, Mukai K, Mizuno Y, Masuko K, Minagawa K (2008) The comparative study of beta-cryptoxanthin derived from Satsuma mandarin for fat of human body. Jpn Pharmacol Ther 36:247–253Google Scholar
  219. Tsutsumi C, Okuno M, Tannous L, Piantedosi R, Allan M, Goodman DS, Blaner WS (1992) Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem 267(3):1805–1810PubMedGoogle Scholar
  220. Turer AT, Scherer PE (2012) Adiponectin: mechanistic insights and clinical implications. Diabetologia 55(9):2319–2326PubMedCrossRefGoogle Scholar
  221. van Helden YG, Keijer J, Heil SG, Pico C, Palou A, Oliver P, Munnia A, Briede JJ, Peluso M, Franssen-van Hal NL, van Schooten FJ, Godschalk RW (2009) Beta-carotene affects oxidative stress-related DNA damage in lung epithelial cells and in ferret lung. Carcinogenesis 30(12):2070–2076PubMedCrossRefGoogle Scholar
  222. van Helden YG, Godschalk RW, von Lintig J, Lietz G, Landrier JF, Bonet ML, van Schooten FJ, Keijer J (2011) Gene expression response of mouse lung, liver and white adipose tissue to beta-carotene supplementation, knockout of Bcmo1 and sex. Mol Nutr Food Res 55(10):1466–1474PubMedCrossRefGoogle Scholar
  223. van Herpen-Broekmans WM, Klopping-Ketelaars IA, Bots ML, Kluft C, Princen H, Hendriks HF, Tijburg LB, van Poppel G, Kardinaal AF (2004) Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation. Eur J Epidemiol 19(10):915–921PubMedCrossRefGoogle Scholar
  224. Vaughan LA, Benyshek DC, Martin JF (1997) Food acquisition habits, nutrient intakes, and anthropometric data of Havasupai adults. J Am Diet Assoc 97(11):1275–1282PubMedCrossRefGoogle Scholar
  225. Viroonudomphol D, Pongpaew P, Tungtrongchitr R, Changbumrung S, Tungtrongchitr A, Phonrat B, Vudhivai N, Schelp FP (2003) The relationships between anthropometric measurements, serum vitamin A and E concentrations and lipid profiles in overweight and obese subjects. Asia Pac J Clin Nutr 12(1):73–79PubMedGoogle Scholar
  226. Virtanen SM, van’t Veer P, Kok F, Kardinaal AF, Aro A (1996) Predictors of adipose tissue carotenoid and retinol levels in nine countries. The EURAMIC Study. Am J Epidemiol 144(10):968–979PubMedCrossRefGoogle Scholar
  227. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome – an allostatic perspective. Biochim Biophys Acta 1801(3):338–349PubMedCrossRefGoogle Scholar
  228. von Lintig J (2012) Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 96(5):1234S–1244SCrossRefGoogle Scholar
  229. Wallstrom P, Wirfalt E, Lahmann PH, Gullberg B, Janzon L, Berglund G (2001) Serum concentrations of beta-carotene and alpha-tocopherol are associated with diet, smoking, and general and central adiposity. Am J Clin Nutr 73(4):777–785PubMedGoogle Scholar
  230. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2):159–170PubMedCrossRefGoogle Scholar
  231. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2(10), e294PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wang L, Gaziano JM, Norkus EP, Buring JE, Sesso HD (2008) Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women. Am J Clin Nutr 88(3):747–754PubMedPubMedCentralGoogle Scholar
  233. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  234. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9(9):1033–1045PubMedCrossRefGoogle Scholar
  235. Wise JA, Kaats GR, Preuss HG, Morin RJ (2009) beta-Carotene and alpha-tocopherol in healthy overweight adults; depletion kinetics are correlated with adiposity. Int J Food Sci Nutr 60(3):65–75PubMedCrossRefGoogle Scholar
  236. Wisse BE (2004) The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 15(11):2792–2800PubMedCrossRefGoogle Scholar
  237. Wolfe WS, Sanjur D (1988) Contemporary diet and body weight of Navajo women receiving food assistance: an ethnographic and nutritional investigation. J Am Diet Assoc 88(7):822–827PubMedGoogle Scholar
  238. Xue JC, Schwarz EJ, Chawla A, Lazar MA (1996) Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol 16(4):1567–1575PubMedPubMedCentralCrossRefGoogle Scholar
  239. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362PubMedCrossRefGoogle Scholar
  240. Yeum KJ, Booth SL, Roubenoff R, Russell RM (1998) Plasma carotenoid concentrations are inversely correlated with fat mass in older women. J Nutr Health Aging 2(2):79–83PubMedGoogle Scholar
  241. Zhang M, Hu P, Krois CR, Kane MA, Napoli JL (2007) Altered vitamin A homeostasis and increased size and adiposity in the rdh1-null mouse. FASEB J 21(11):2886–2896PubMedCrossRefGoogle Scholar
  242. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J (2007a) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13(6):695–702PubMedPubMedCentralCrossRefGoogle Scholar
  243. Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Krinsky NI, Dolnikowski GG, Plutzky J (2007b) Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 21(1):77–88PubMedCrossRefGoogle Scholar
  244. Zizola CF, Schwartz GJ, Vogel S (2008) Cellular retinol-binding protein type III is a PPARgamma target gene and plays a role in lipid metabolism. Am J Physiol Endocrinol Metab 295(6):E1358–E1368PubMedPubMedCentralCrossRefGoogle Scholar
  245. Zizola CF, Frey SK, Jitngarmkusol S, Kadereit B, Yan N, Vogel S (2010) Cellular retinol-binding protein type I (CRBP-I) regulates adipogenesis. Mol Cell Biol 30(14):3412–3420PubMedPubMedCentralCrossRefGoogle Scholar
  246. Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA (2008) Vitamin A intake is inversely related with adiposity in healthy young adults. J Nutr Sci Vitaminol (Tokyo) 54(5):347–352CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Luisa Bonet
    • 1
    • 2
  • Jose A. Canas
    • 3
  • Joan Ribot
    • 1
    • 2
  • Andreu Palou
    • 1
    • 2
  1. 1.Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and BiotechnologyUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma de MallorcaSpain
  3. 3.Metabolism and DiabetesNemours Children’s ClinicJacksonvilleUSA

Personalised recommendations