Advertisement

Manipulation of Carotenoid Content in Plants to Improve Human Health

  • Enriqueta Alós
  • Maria Jesús Rodrigo
  • Lorenzo ZacariasEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 79)

Abstract

Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.

Keywords

Human nutrition Antioxidants Metabolic engineering Nutritional important crops Carotenoid improvement 

Notes

Acknowledgements

Research in our laboratory has been supported by grants from the Spanish Ministerio de Ciencia e Innovación, and Ministerio de Economia y Competitividad, and also from the Generalitat Valenciana (Prometeo 2014/0027). LZ and MJR are members of the IBERCAROT network funded by CYTED (ref. 112RT0445). EA was the recipient of a JAE-postdoctoral contract (CSIC-FSE).

References

  1. Alos E, Cercos M, Rodrigo MJ, Zacarias L, Talon M (2006) Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agric Food Chem 54:4888–4895PubMedCrossRefGoogle Scholar
  2. Alos E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CM, Thannhauser TW, Rose JK, Talon M, Cercos M (2008) An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiol 47:1300–1315CrossRefGoogle Scholar
  3. Alquezar B, Rodrigo MJ, Zacarías L (2008) Carotenoid biosynthesis and their regulation in citrus fruits. Tree Forest Sci Biotech 2:23–35Google Scholar
  4. Altinciceck B, Kovacs JL, Gerardo NM (2012) Horizontally transferred fungal carotenoid genes in two-spotted spider mite Tetranychus urticae. Biol Lett 8:253–257CrossRefGoogle Scholar
  5. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562PubMedPubMedCentralCrossRefGoogle Scholar
  6. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer H (2011) Biofotification: a new tol to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S41PubMedCrossRefGoogle Scholar
  8. Bouvier F, Hugueney P, D’Harlingue A, Kuntz M, Camara B (1994) Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J 6:45–54PubMedCrossRefGoogle Scholar
  9. Brand A, Borovsky Y, Meir S, Rogachev I, Aharoni A, Paran I (2012) A major QTL for pigment content in pepper fruit is associated with variation in plastid compartment size. Planta 235:579–588PubMedCrossRefGoogle Scholar
  10. Brown CR, Culley D, Yang C, Durst R, Wrolstad R (2005) Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. J Amer Soc Hort Sci 130:174–180Google Scholar
  11. Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078PubMedCrossRefGoogle Scholar
  12. Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJM, Morris JA, Hedley PE, Fraser PD, Taylor MA (2015) Optimizing ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sc 234:27–37CrossRefGoogle Scholar
  13. Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci 49:313–326CrossRefGoogle Scholar
  14. Ceballos H, Hershey C, Becerra-Lopez-Lavalle LA (2012) New approaches to cassava breeding. Plant Breed Rev 36:427–504Google Scholar
  15. Ceballos H, Morante N, Sanchez T, Ortiz D, Aragon I, Chavez AL, Pizarro M, Calle F, Dufour D (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Sci 53:2342–2351CrossRefGoogle Scholar
  16. Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2007) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–323PubMedCrossRefGoogle Scholar
  17. Cong L, Wang C, Chen L, Liu H, Yang G, He G (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57:8652–8660PubMedCrossRefGoogle Scholar
  18. D’Ambrosio C, Giorio G, MarinoI MA, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214CrossRefGoogle Scholar
  19. D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60PubMedCrossRefGoogle Scholar
  20. Datta K, Rai M, Parkhi V et al (2006) Improved “Golden” rice and post-transgeneration enhancement of metabolic target products of carotenoids (b-carotene) in transgenic elite cultivars (IR64 and BR29). Curr Sci 91:935–939Google Scholar
  21. Datta SK, Datta K, Parkhi V et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278CrossRefGoogle Scholar
  22. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895PubMedCrossRefGoogle Scholar
  23. de Saint GA, Bonhomme S, Boyer FD, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589CrossRefGoogle Scholar
  24. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2012) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34CrossRefGoogle Scholar
  25. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  26. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2, e350PubMedPubMedCentralCrossRefGoogle Scholar
  27. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 409:81–89Google Scholar
  29. Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson MS, Pfeiffer W (2012) Nutritionally enhanced staple food crops. Plant Breeding Rev 36:169–291Google Scholar
  30. Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27PubMedCrossRefGoogle Scholar
  31. Erdman JW Jr, Fordyce EJ (1989) Soy products and the human diet. Am J Clin Nutr 49:725–737PubMedGoogle Scholar
  32. Etminan M, Takkouche B, Caamaño-Isorna F (2004) The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 13:340–345PubMedGoogle Scholar
  33. Failla ML, Chitchumroonchokchai C, Siritunga D, De Moura FF, Fregene M, Manary MJ, Sayre RT (2012) Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. J Agric Food Chem 60:3861–3866PubMedCrossRefGoogle Scholar
  34. Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998PubMedPubMedCentralCrossRefGoogle Scholar
  35. Faostat (2008) Statistics on Agricultural Production and Trade. Food and Agricultural Organization of the United Nations. www.faostat.com
  36. Farre G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48CrossRefGoogle Scholar
  37. Farre G, Bai C, Twyman RM, Capell T, Christou P, Zhu C (2011) Nutritious crops producing multiple carotenoids-a metabolic balancing act. Trend Plant Sci 16:532–540CrossRefGoogle Scholar
  38. Fassett RG, Coombes JS (2012) Astaxanthin in cardiovascular health and disease. Molecules 17:2030–2048PubMedCrossRefGoogle Scholar
  39. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265PubMedCrossRefGoogle Scholar
  40. Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413PubMedPubMedCentralGoogle Scholar
  41. Fraser PD, Römer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A 99:1092–1097PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–31211PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fraser PD, Enfissi EM, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204PubMedCrossRefGoogle Scholar
  44. Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602PubMedCrossRefGoogle Scholar
  45. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701CrossRefGoogle Scholar
  46. Fu Z, Chai Y, Zhou Y, Yang X, Warburton ML, Xu S, Cai Y, Zhang D, Li J, Yan J (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935PubMedCrossRefGoogle Scholar
  47. Fuentes F, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59PubMedCrossRefGoogle Scholar
  48. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332PubMedCrossRefGoogle Scholar
  49. Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645PubMedCrossRefGoogle Scholar
  50. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza R, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208PubMedPubMedCentralCrossRefGoogle Scholar
  51. Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117PubMedCrossRefGoogle Scholar
  52. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trend Biotech 26:139–145CrossRefGoogle Scholar
  53. Goo YM, Han EH, Jeong JC, Kwak SS, Yu J, Kim YH, Ahn MJ, Lee SW (2015) Over expression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato. C R Biol 338:12–20PubMedCrossRefGoogle Scholar
  54. Gross J (1987) Pigments in fruits. Academic, LondonGoogle Scholar
  55. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefGoogle Scholar
  56. Harada H, Maoka T, Osawa A, Hattan J, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23:303–315PubMedCrossRefGoogle Scholar
  57. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151CrossRefGoogle Scholar
  58. Hentschel V, Katja K, Hollmann J, Lindhauer MG, Böhm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668PubMedCrossRefGoogle Scholar
  59. Hinchee MAW, Connor-Wood DV, Newwll CA, Mcdonnell RE, Sato SJ, Gasser CS, Fiscchhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plant using Agrobacterium-mediated DNA transfer. Nat Biotech 6:915–922CrossRefGoogle Scholar
  60. Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezi G, Masawi AN, Baingana R, Carriquiry A, de Brauw A, Meenakshi JV, Gilligan DO (2012) Introduction of β-carotene-rich orange sweet potato in rural Uganda results in increased vitamin A intakes among children and women and improved vitamin A status among children. J Nutr 142:1871–1880PubMedCrossRefGoogle Scholar
  61. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67PubMedCrossRefGoogle Scholar
  62. Ihemere U, Sayre RT (2008) Transgenic cassava. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 7, transgenic sugar, tuber and fiber crops. Blackwell, LondonGoogle Scholar
  63. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501PubMedCrossRefGoogle Scholar
  64. Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated wild carrot cross. Theor Appl Genet 119:1155–1169PubMedCrossRefGoogle Scholar
  65. Kaneko S, Nagamine T, Yamada T (1995) Esterification of endosperm lutein with fatty acids during the storage of wheat seeds. Biosc Biotech Biochem 59:1–4CrossRefGoogle Scholar
  66. Kidd PM (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16:355–364PubMedGoogle Scholar
  67. Kim MJ, Kim JK, Kim HJ, Pak JH, Lee JH, Kim DH, Choi HK, Jung HW, Lee JD, Chung YS, Ha SH (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7, e48287PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175PubMedCrossRefGoogle Scholar
  69. Krinsky NI (1989) Antioxidant function of carotenoids. Free Rad Bio Med 7:617–635CrossRefGoogle Scholar
  70. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516PubMedCrossRefGoogle Scholar
  71. Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing gamma-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306PubMedGoogle Scholar
  72. Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DJ (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67PubMedCrossRefGoogle Scholar
  73. Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van EJ, Deng XX, Failla M, Thannhauser TW (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352PubMedCrossRefGoogle Scholar
  74. Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61:5764–5771PubMedCrossRefGoogle Scholar
  75. Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci U S A 101:9897–9902PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q (2013) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signaling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotech J 12:105–115CrossRefGoogle Scholar
  77. Liu J-X, Chiou C-Y, Shen C-H, Chen P-J, Liu Y-C, Jian C-D, Shen X-L, Shen F-Q, Yeh K-W (2014) RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid, vol 3, Springerplus. Springer, p 478Google Scholar
  78. Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39PubMedCrossRefGoogle Scholar
  79. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223PubMedCrossRefGoogle Scholar
  80. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4, e6373PubMedPubMedCentralCrossRefGoogle Scholar
  82. Maida JM, Mathers K, Alley C (2008) Pediatric ophthalmology in the developing world. Curr Opin Ophthalmol 19:403–408PubMedCrossRefGoogle Scholar
  83. Mellado-Ortega E, Hornero-Mendez D (2015) Carotenoids in cereals: an ancient resource with present and future applications. Phytochem Rev 14:873–890.CrossRefGoogle Scholar
  84. Moise AR, Al-Babili S, Wurtzel ET (2013) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193PubMedPubMedCentralCrossRefGoogle Scholar
  85. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 18:181–194CrossRefGoogle Scholar
  86. Moran NA, Jarvick T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627PubMedCrossRefGoogle Scholar
  87. Mordente A, Guantario B, Meucci E, Silvestrini A, Lombardi E, Martorana GE, Giardina B, Böhm V (2011) Lycopene and cardiovascular diseases: an update. Curr Med Chem 18:1146–1163PubMedCrossRefGoogle Scholar
  88. Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C (2013) Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8, e58144PubMedPubMedCentralCrossRefGoogle Scholar
  89. Morris ML, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982PubMedCrossRefGoogle Scholar
  90. Morris WL, Ducreux LJ, Hedden P, Millam S, Taylor MA (2006) Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J Exp Bot 57:3007–3018PubMedCrossRefGoogle Scholar
  91. Mou B (2009) Nutrient content of lettuce and its improvement. Curr Nutr Food Sci 5:242–248CrossRefGoogle Scholar
  92. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767PubMedPubMedCentralCrossRefGoogle Scholar
  93. Naqvi S, Zhu C, Farre G, Sandmann G, Capell T, Christou P (2011) Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol J 9:384–393PubMedCrossRefGoogle Scholar
  94. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Molec Plant 8:68–82CrossRefGoogle Scholar
  95. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Mol Biol 50:333–359CrossRefGoogle Scholar
  96. Njoku DM, Vernon G, Egesi CN, Asante I, Offe FK, Okogbenin E, Kulakow P, Eke-Okoro ON, Ceballos H (2011) Breeding for enhanced β-carotene content in cassava: constraints and accomplishments. J Crop Improv 25:560–571CrossRefGoogle Scholar
  97. Nunes AC, Kalkmann DC, Aragão FJ (2009) Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 18:661–667PubMedCrossRefGoogle Scholar
  98. Okada Y, Ishikura M, Maoka T (2009) Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 73:1928–1932PubMedCrossRefGoogle Scholar
  99. Olson JA (1994) Needs and sources of carotenoids and vitamin A. Nutr Rev 52:S67–S73PubMedCrossRefGoogle Scholar
  100. Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716PubMedPubMedCentralCrossRefGoogle Scholar
  101. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotech 23:482–487CrossRefGoogle Scholar
  102. Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2015) Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiol Plant 153:525–537PubMedCrossRefGoogle Scholar
  103. Pixley K, Palacios-Rojas N, Babu R, Mutale R, Surie R, Simpungwe E (2013) Biofortification of maize with provitamin A carotenoids. In: Tanumihardjo SA (ed) Carotenoids and human health. Springer Science, New York, pp 271–292Google Scholar
  104. Pons E, Alquézar B, Rodríguez A, Martorell P, Genovés S, Ramón D, Rodrigo MJ, Zacarías L, Peña L (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12:17–27PubMedCrossRefGoogle Scholar
  105. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263PubMedCrossRefGoogle Scholar
  106. Rodrigo MJ, Marcos JF, Zacarías L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52:6724–6731PubMedCrossRefGoogle Scholar
  107. Rodrigo MJ, Alquezar B, Alos E, Lado J, Zacarias L (2013) Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. Sci Hort 163:42–62CrossRefGoogle Scholar
  108. Rodríguez-Concepción M (2010) Supply of precursors for carotenoid biosynthesis in plants. Arch Biochem Biophys 504:118–122PubMedCrossRefGoogle Scholar
  109. Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539:110–116PubMedCrossRefGoogle Scholar
  110. Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza SG (2014) Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Molec Biol 84:659–673CrossRefGoogle Scholar
  111. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotech 18:666–669CrossRefGoogle Scholar
  112. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272PubMedCrossRefGoogle Scholar
  113. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419PubMedCrossRefGoogle Scholar
  114. Rosati C, Diretto G, Giuliano G (2009) Biosynthesis and engineering of carotenoids and apocarotenoids in plants: state of the art and future prospects. Biotechnol Genetic Eng Rev 26:139–162CrossRefGoogle Scholar
  115. Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011a) BioCassava plus program: biofortification of cassava for sub- Saharan Africa. Annu Rev Plant Biol 62:251–272PubMedCrossRefGoogle Scholar
  116. Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Sisitunga D, Taylor N, Vanderschuren H, Zhang P (2011b) The BioCassava plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272PubMedCrossRefGoogle Scholar
  117. Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol 138:441–450PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schmidt MA, Parrott WA, Hildebrand DF, Berg RH, Cooksey A, Pendarvis K, He Y, McCarthy F, Herman EM (2014) Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol J 13:590–600PubMedCrossRefGoogle Scholar
  119. Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241PubMedCrossRefGoogle Scholar
  120. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412PubMedCrossRefGoogle Scholar
  121. Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5:291–317CrossRefGoogle Scholar
  122. Simikin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochem 68:1545–1556CrossRefGoogle Scholar
  123. Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548PubMedCrossRefGoogle Scholar
  124. Stange C, Fuentes P, Handford M, Pizarro L (2008) Daucus carota as a novel model to evaluate the effect of light on carotenogenic gene expression. Biol Res 41:289–301PubMedCrossRefGoogle Scholar
  125. Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63:3097–3108PubMedPubMedCentralCrossRefGoogle Scholar
  126. Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864PubMedPubMedCentralCrossRefGoogle Scholar
  127. Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151CrossRefGoogle Scholar
  128. Thakkar SK, Maziya-Dixon B, Dixon AGO, Failla ML (2007) β-carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to β-carotene content in different genotypes of cassava. J Nutr 137:2229–2233PubMedGoogle Scholar
  129. Thakkar SK, Huo T, Maziya-Dixon B, Failla ML (2009) Impact of style of processing on retention and bioaccessibility of β-carotene in cassava (Manihot esculanta, Crantz). J Agric Food Chem 57:344–1348CrossRefGoogle Scholar
  130. Tunmegamire S, Mwarya R, Andrade ML, Low JW, Ssemakula GN, Laurie AM, Chipungu FP, Ndirigue J, Agili S, Karanja L, Chiona M, Njoku JC, Mtunda K, Ricardo J, Adofo K, Carey E, Cgruneberg WJ (2014). Orange-fleshed sweet potato for Africa. Catalog 2014, 2nd edn. International Potato Center (CIP), Lima Peru, 74 pGoogle Scholar
  131. Van Eck J, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Amer J Potato Res 84:331–342CrossRefGoogle Scholar
  132. Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65:2545–2556PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agric Food Chem 58:9572–9578PubMedCrossRefGoogle Scholar
  134. Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356 PubMedPubMedCentralCrossRefGoogle Scholar
  135. West KP (2002) Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132:2857S–2866SPubMedGoogle Scholar
  136. Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288PubMedCrossRefGoogle Scholar
  137. Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Frontiers Plant Sci 29:1–12Google Scholar
  138. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402PubMedCrossRefGoogle Scholar
  139. Ye VM, Bhatia SK (2012) Metabolic engineering strategies for the production of beneficial carotenoids in plants. Food Sci Biotechnol 21:1511–1517CrossRefGoogle Scholar
  140. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  141. Yu B, Gruber MY, Khachatourians GG, Zhou R, Epp DJ, Hegedus DD, Parkin IA, Welsch R, Hannoufa A (2012) Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J Exp Bot 63:5189–5202PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A (2013) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585CrossRefGoogle Scholar
  143. Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165PubMedCrossRefGoogle Scholar
  144. Zaripheh S, Nara TY, Nakamura MT, Erdman JW Jr (2006) Dietary lycopene downregulates carotenoid 15, 15′-monooxygenase and PPAR-gamma in selected rat tissues. J Nutr 136:932–938PubMedGoogle Scholar
  145. Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X (2009) Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep 28:1737–1746PubMedCrossRefGoogle Scholar
  146. Zhou X, Mcquinn R, Fei Z, Wolters AMA, Van Eck J, Brown C, Giovannoni J, Li L (2011) Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant Cell Environ 34:1020–1030PubMedCrossRefGoogle Scholar
  147. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Enriqueta Alós
    • 1
  • Maria Jesús Rodrigo
    • 1
  • Lorenzo Zacarias
    • 1
    Email author
  1. 1.Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC)Paterna, ValenciaSpain

Personalised recommendations